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Course Learning Outcomes (CLO): After successful completion of the course students will be able to - 

 

CLO1 Define the basic terminology and theorems associated with Complex variable, Vector Analysis and 

Coordinate Geometry. 

CLO2 Properties of Complex number, Continuity and Differentiability of Complex number, Analytic 

functions, Residues, Cauchy integral formula, Harmonic Functions and Applications of complex numbers in 

Engineering. 

CLO3 Describe Two Dimension Geometry, Three-dimension Geometry, Plane, Cube. 

CLO4 Operation of vector Analysis, vector differentiation and Integrations, Different applications 

of vector Analysis. 

CLO5 Apply the acquired concepts of Complex variable, Vector Analysis and Coordinate Geometry in 

engineering. 

2 

Course Content Summary 

SL. Content of Courses Hrs CLO’s 

1 Definition of complex number, Notation, Modulus and argument of 

complex number, Real and Imaginary part of Complex number, 

Polar Form of Complex Number, Related Mathematics. Geometrical 

Interpretation of Complex Number, Graphical Representation of 

complex equations, Circle and Ellipse related Problems 

8 CLO1, CLO2 

2 General functions of complex Number, Limits of functions of 

complex variables and related theorems, Continuity of functions of 

complex variables. Definition Analytic Function, Entire Function, 

Singularity, and related problems, Cauchy's Integral theorem and 

related Conjugate, Laurent's Theorem, Residue, Cauchy Residue 

Theorem, CRT Related mathematics. 

6 CLO1, CLO5 

Course Outlines 
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3 Introduction, Change of axes, Transformation of co- ordinates, 

Pair of straight lines, General equation of second  degree,  

Circle,  Equation  of  circle  and mathematics,  Conic  

section:  Parabola,  Ellipse, Hyperbola and properties, The 

general equation of second degree, Equation of Conics and 

Properties of Conics, Direction cosines and direction ratios and 

related Mathematics, Straight Line, Plane, Equation of Plane and 

Related mathematics, The shortest distance, Equation of Shortest 

distance and Related mathematics. 

10 CLO3, CLO5 

4 Definition of Vectors, Scalars and vectors, Elementary operations of 

vectors, Dot product and Vector Product of vectors, Multiplication 

of vectors by scalars, Angle Between two vectors and 

Geometrical Representation of vectors, Spherical and Cylindrical 

systems, Divergence and Curl, Gradient, Physical significance of 

Gradient, Divergence  and  Curl,  Gauss’s  Theorem  and  its 

application,  Gauss’s  Theorem  and  its  application, Green’s 

theorem with applications, Stroke’s theorem and its application. 

10 CLO4, CLO5 

Course Plan Specifying content, CLO’s, Teaching Learning, and Assessment strategy 

mapping with CLO’s 

Week Topics Teaching-Learning 

Strategy 

Assessment 

Strategy 

Corresponding 

CLO’s 

1 Complex Number 

 Definition of 

complex 

number 

 Modulus and 

argument of 

complex 

number 

 Real and 

Imaginary part 

of Complex 

number 

 

 

 

 

 

 

 

 

 

 

 

Lecture, Discussion 

 

 

 

 

 

 

 

 

 

 

 

Quiz 

 

 

 

 

 

 

 

 

 

 

 

CLO1 



4 

  Polar Form of 

Complex 

Number 

 Related 

Mathematics 

2  Geometrical 

Interpretation 

of Complex 

Number 

 Graphical 

Representation 

of complex 

equations 

  Circle and 

Ellipse related 

Problems 

 

 

 

 

 

 

 

 

 

Discussion, Oral 

Presentation 

 

 

 

 

 

 

 

 

 

Written 

Assignment 

 

 

 

 

 

 

 

 

 

 

CLO1 

3 General functions of 

complex Number 

 Limits 

  continuity of 

functions of 

complex 

variables. 

 Analytic 

Function 

  Entire 

Function 

 Singularity 

 and related 

problems 

 

 

 

 

 

 

 

 

 

 

 

 

 

Oral Presentation 

 

 

 

 

 

 

 

 

 

 

 

 

Oral 

Presentation 

 

 

 

 

 

 

 

 

 

 

 

 

 

CLO1 

4 Cauchy's Integral 

theorem 

 theorem 

 and related 

problems 

 

 

 

 

Group Work 

 

 

 

Group 

Assignment 

 

 

 

 

CLO1 

5 Harmonic and 

Conjugate harmonic 

 Definition of 

harmonics. 

 Properties of 

harmonic 

functions 

 Cauchy 

Reimann PDE, 

Conjugate 

 

 

 

 

 

 

 

 

 

Discussion 

 

 

 

 

 

 

 

 

 

Presentation 

 

 

 

 

 

 

 

 

 

CLO2 
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6  Finding 

harmonic 

Conjugate 

 Related 

Mathematics, 

Solution  of 

these equations 

together with 

applications. 

Group work  

 

 

 

 

 

 

 

Quiz, Written 

Assignment 

 

 

 

 

 

 

 

 

 

CLO2 

7 Residue Theorem and 

Related mathematics 

 Residues, 

Cauchy’s 

Residue 

Theorem 

 examples 

 Laurent's 

Theorem 
 Cauchy 

 

 

 

 

 

 

 

 

 

 

 

Lecture, Discussion 

 

 

 

 

 

 

 

 

 

Oral 

Presentation, 

Quiz 

 

 

 

 

 

 

 

 

 

 

 

CLO1 

8 2-D Geometry 

 Introduction 

 Change of axes 

 

Transformation 

of co-ordinates 

  Pair of straight 

lines 

 

 

 

 

 

 

Discussion, Oral 

Presentation 

 

 

 

 

 

Group 

Assignment, 

Quiz 

 

 

 

 

 

 

 

CLO3 

9 General equation of 

second degree 

 Circle, 

Equation of 

circle 

 Mathematics 

  Tangents and 

Normal 

 related 

Mathematics. 

 

 

 

 

 

 

 

 

 

Oral Presentation 

 

 

 

 

 

 

 

Presentation, 

Written 

Assignment 

 

 

 

 

 

 

 

 

 

CLO2 

10 Conic section: 

 Parabola 

 Ellipse 

 Hyperbola, 

and properties. 

 

 

 

 

Oral Presentation 

 

 

 

Quiz, 

Presentation 

 

 

 

 

CLO3 
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11 Co-ordinate system 

 Direction 

cosines 

 direction ratios 

  related 

Mathematics 

 Straight Line, 

Plane, 

Equation of 

Plane 

  and Related 

mathematics 

 

 

 

 

 

 

 

 

 

 

 

Group Work 

 

 

 

 

 

 

 

 

Written 

Assignment, 

Oral 

Presentation 

 

 

 

 

 

 

 

 

 

 

 

CLO3 

12 The shortest distance 

 Equation of 

Shortest 

distance 

 Conditions  of 

lines 

 and Related 

Mathematics 

  Cube and 

related 

Mathematics. 

 

 

 

 

 

 

 

 

 

 

Discussion, Oral 

Presentation 

 

 

 

 

 

 

 

 

 

Group 

Assignment, 

Presentation 

 

 

 

 

 

 

 

 

 

 

 

CLO3 

13 Vector 

 Definition of 

Vectors 

 Scalars and 

vectors 

  Equality of 

vectors 

 Elementary 

operations of 

vectors. 

 

 

 

 

 

 

 

 

Discussion, Oral 

Presentation 

 

 

 

 

 

 

 

 

Quiz, Group 

Assignment 

 

 

 

 

 

 

 

 

 

CLO4 

14  Dot product 

and Vector 

Product of 

vectors 

 Multiplication 

of vectors by 

scalars 

  Angle 

Between two 

vectors 

 

 

 

 

 

 

 

 

 

Oral Presentation 

 

 

 

 

 

 

 

Written 

Assignment, 

Quiz 

 

 

 

 

 

 

 

 

 

CLO4 



7 

 and 
Geometrical 
Representati
on of vectors 

15 Vector 
Differentiation 

 Divergence 

 Curl 

 Gradient 

 Physical 

significance 

of Gradient, 

Divergence 

and Curl 
 Related 

theorems 
and 
mathematic
s 

 

 

 

 

 

 

 

 

 

 

 
Lecture, Discussion 

 

 

 

 

 

 

 

 
Oral 
Presentatio
n, Group 
Assignmen
t 

 

 

 

 

 

 

 

 

 

 

 
CLO4 

16  Vector 
Integrati
on 

 Position 
vector 

 Green’s 
theorem 
with 
application
s 

 

 

 

 

 
Practical Work 

 

 

 

 
Presentatio
n, Quiz 

 

 

 

 

 
CLO4 

17  Gauss’s 

Theorem 

and its 

application 
  Stroke’s 

theorem, 
and its 
application. 

 

 

 

 

 

 
Reading 
Assignment 

 

 

 
Quiz, 
Written 
Assignment
, Oral 
Presentatio
n 

 

 

 

 

 

 
CLO4 



COMPLEX NUMBERS 

You can use both real and imaginary numbers 
to solve equations 

 

At GCSE level you met the Quadratic formula: 

 

 

 

The part under the square root sign is known as 
the ‘discriminant’, and can be used to determine 

how many solutions the equation has: 

 

 

 

 

 

The problem is that we cannot square root a 
negative number, hence the lack of real roots in 

the 3rd case above 

1A 

𝑥 =
−𝑏 ± 𝑏2 − 4𝑎𝑐

2𝑎
 

𝑏2 − 4𝑎𝑐 > 0 

𝑏2 − 4𝑎𝑐 = 0 

𝑏2 − 4𝑎𝑐 < 0 

−→  2 𝑟𝑒𝑎𝑙 𝑟𝑜𝑜𝑡𝑠 

−→ 1 𝑟𝑒𝑎𝑙 𝑟𝑜𝑜𝑡 

−→ 0 𝑟𝑒𝑎𝑙 𝑟𝑜𝑜𝑡𝑠 

To solve these equations, we can use 
the imaginary number ‘i’ 

 

 

 

The imaginary number ‘i’ can be 
combined with real numbers to create 

‘complex numbers’ 

 

An example of a complex number 
would be: 

 

 

Complex numbers can be added, 
subtracted, multiplied and divided in 

the same way you would with an 
algebraic expression 

𝑖 = −1 

5 + 2𝑖 

Week 1 

Topics: Complex number  

Page no (7-40) 



You can use both real and 

imaginary numbers to solve 

equations 

 

1) Write √-36 in terms of i 

 

 

 

 

2)Write √-28 in terms of i 

 

 

 

1A 

−36 

36 −1 

= 6𝑖 

This sign means 
the positive 
square root 

Split up using surd 
manipulation 

Simplify each part 
 √-1 = i 

−28 

28 −1 

4 7 −1 

Split up into a positive 
and negative part 

Split up the 28 
further… 

= 2 7𝑖 

= 2𝑖 7 

Simplify each 
part 

This is usually 
written in this 

way 



COMPLEX NUMBERS 

You can use both real and 

imaginary numbers to solve 

equations 

 

Solve the equation: 

 

 

 

1A 

𝑥2 + 9 = 0 

𝑥2 + 9 = 0 

𝑥2 = −9 

𝑥 = ± −9 

𝑥

= ± 9 −1 

𝑥 = ±3𝑖 

Subtract 9 

Square root – we need to consider 
both positive and negative as we 

are solving an equation 

Split up 

Write in terms of i 

You should ensure you write full 
workings – once you have had a lot of 

practice you can do more in your head! 



COMPLEX NUMBERS 

You can use both real and 

imaginary numbers to solve 

equations 

 

Solve the equation: 

 

 

You can use one of two methods 

for this 

 

Either ‘Completing the square’ or 

the Quadratic formula 

 

 

 

 

1A 

𝑥2 + 6𝑥 + 25 = 0 

𝑥2 + 6𝑥 + 25 = 0 

𝑥 + 3 2 

𝑥 + 3 2 

(𝑥 + 3)(𝑥 + 3) 

𝑥2 + 6𝑥 + 9 

+ 16 =  0 

𝑥 + 3 2 = −16 

𝑥 + 3 = ± −16 

𝑥 = −3 ± −16 

𝑥 = −3 ± 16 −1 

𝑥 = −3 ± 4𝑖 

Write a squared bracket, with 
the number inside being half 

the x-coefficient 

Imagine squaring 
the bracket 

This is the 
answer we get 

The squared bracket gives us both 
the x2 term and the 6x term 

 It only gives us a number of 9, 
whereas we need 25 – add 16 on! 

Completing the square 

If the x term is even, and there is only a 
single x2, then completing the square will 

probably be the quickest method! 

Subtract 16 

Square root 

Subtract 3 

Split the root up 

Simplify 



COMPLEX NUMBERS 

You can use both real and 

imaginary numbers to solve 

equations 

 

Solve the equation: 

 

 

You can use one of two methods 

for this 

 

Either ‘Completing the square’ or 

the Quadratic formula 

 

 

 1A 

𝑥2 + 6𝑥 + 25 = 0 

The Quadratic formula 

𝑥 =
−𝑏 ± 𝑏2 − 4𝑎𝑐

2𝑎
 

𝑥 =
−6 ± (6)2−(4 × 1 × 25)

2(1)
 

a = 1 

b = 6 

c = 25 

𝑥 =
−6 ± −64

2
 

𝑥 =
−6 ± 64 −1

2
 

𝑥 =
−6 ± 8𝑖

2
 

𝑥 = −3 ± 4𝑖 

Sub in values 

Calculate the part 
under the root sign 

Split it up 

Simplify 
the roots 

Divide all 
by 2 

If the x2 coefficient is greater than 1, or 
the x term is odd, the Quadratic formula 

will probably be the easiest method! 



COMPLEX NUMBERS 

You can use both real and 

imaginary numbers to solve 

equations 

 

Simplify each of the following, giving 

your answers in the form: 

 

 

where: 

 

 

 

1A 

𝑎 + 𝑏𝑖 

𝑎 ∈ 𝑅 𝑎𝑛𝑑 𝑏 ∈ 𝑅 

This means a and b 
are real numbers 

1) 2 + 5𝑖 + (7 + 3𝑖) 

= 9 + 8𝑖 

2) 2 − 5𝑖 − (5 − 11𝑖) 

= −3 + 6𝑖 

= 2 − 5𝑖 − 5 + 11𝑖 

3) 6 1 + 3𝑖  

= 6 + 18𝑖 

Group terms 
together 

‘Multiply out’ 
the bracket 

Group terms 

Multiply out the 
bracket 



COMPLEX NUMBERS 

You can multiply complex numbers 

and simplify powers of I 

 

Complex numbers can be multiplied 

using the same techniques as used in 

algebra. 

 

You can also use the following rule to 

simplify powers of i: 

1B 

𝑖 = −1 

𝑖2 = −1 

Multiply out the following bracket 

(2 + 3𝑖)(4 + 5𝑖) 

= 8 + 12𝑖 + 10𝑖 + 15𝑖2 

= 8 + 22𝑖 + 15(−1) 

= −7 + 22𝑖 

Multiply put like you would 
algebraically (eg) grid method, 

FOIL, smiley face etc)  

Group i terms, write i2 as -1 

Simplify 



COMPLEX NUMBERS 

You can multiply complex numbers 

and simplify powers of I 

 

Complex numbers can be multiplied 

using the same techniques as used in 

algebra. 

 

You can also use the following rule to 

simplify powers of i: 

1B 

𝑖 = −1 

𝑖2 = −1 

Express the following in the form a + bi 

(7 − 4𝑖)2 

= (7 − 4𝑖)(7 − 4𝑖) 

= 49 − 28𝑖 − 28𝑖 + 16𝑖2 

= 49 − 56𝑖 + 16(−1) 

= 33 − 56𝑖 

Write as a double bracket 

Multiply out 

Group i terms, write i2 as -1 

Simplify 



COMPLEX NUMBERS 

You can multiply complex numbers 

and simplify powers of I 

 

Complex numbers can be multiplied 

using the same techniques as used in 

algebra. 

 

You can also use the following rule to 

simplify powers of i: 

1B 

𝑖 = −1 

𝑖2 = −1 

Simplify the following: 

(2 − 3𝑖)(4 − 5𝑖)(1 + 3𝑖) 

(2 − 3𝑖)(4 − 5𝑖) 

= 8 − 12𝑖 − 10𝑖 + 15𝑖2 

= 8 − 22𝑖 + 15(−1) 

= −7 − 22𝑖 

(−7 − 22𝑖)(1 + 3𝑖) 

= −7 − 22𝑖 − 21𝑖 − 66𝑖2 

= −7 − 43𝑖 − 66(−1) 

= 59 − 43𝑖 

Start with the first 2 
brackets 

Multiply out 

Group i terms, replace 
i2 with -1 

Simplify 

Now multiply this by the 3rd bracket 

Multiply out the brackets 

Group i terms and replace 
i2 with -1  

Simplify 



COMPLEX NUMBERS 

You can multiply complex numbers 

and simplify powers of I 

 

Complex numbers can be multiplied 

using the same techniques as used in 

algebra. 

 

You can also use the following rule to 

simplify powers of i: 

1B 

𝑖 = −1 

𝑖2 = −1 

Simplify: 

𝑖3 

= 𝑖2 × 𝑖 

= −1 × 𝑖 

= −𝑖 

1) 

𝑖4 

= 𝑖2 × 𝑖2 

= −1 × −1 

= 1 

2) 

Split up 

Replace i2 with -1 

Simplify 

Split up 

Replace the i2 terms with -1 

Simplify 



COMPLEX NUMBERS 

You can multiply complex numbers 

and simplify powers of I 

 

Complex numbers can be multiplied 

using the same techniques as used in 

algebra. 

 

You can also use the following rule to 

simplify powers of i: 

1B 

𝑖 = −1 

𝑖2 = −1 

Simplify: 

(2𝑖)5 3) 

= 25 × 𝑖5 

= 25 × 𝑖2 × 𝑖2 × 𝑖 

= 32 × −1 × −1 × 𝑖 

= 32𝑖 

Write both as a power of 
5 

Split up the i terms 

Work out 25 and 
replace the i2 terms 

Simplify 



COMPLEX NUMBERS 

You can find the complex conjugate of a complex 
number 

 

You can write down the complex conjugate of a complex 
number, and it helps you divide one complex number by 

another 

 

If a complex number is given by: 

a + bi 

 

Then the complex conjugate is: 

a – bi 

 

(You just reverse the sign of the imaginary part!) 

 

Together, these are known as a complex conjugate pair 

 

The complex conjugate of z is written as z* 

1C 

Write down the complex conjugate of: 

a) 2 + 3𝑖 

= 2 − 3𝑖 

b) 5 − 2𝑖 

= 5 + 2𝑖 

c) 1 − 𝑖 5 

= 1 + 𝑖 5 

Reverse the sign of the 
imaginary term 

Reverse the sign of the 
imaginary term 

Reverse the sign of the 
imaginary term 



COMPLEX NUMBERS 

You can find the complex conjugate 

of a complex number 

 

Find z + z*, and zz*, given that: 

 

z = 2 – 7i 

 

 z* = 2 + 7i 

1C 

𝑧 + 𝑧∗ 

= 2 − 7𝑖 + (2 + 7𝑖) 

= 4 

Replace z and z* 

Group terms 

𝑧𝑧∗ 

= 2 − 7𝑖 (2 + 7𝑖) 

= 4 + 14𝑖 − 14𝑖 − 49𝑖2 

Replace z and z* 

Multiply out 

= 4 − 49(−1) 

= 53 

The i terms cancel out, 
replace i2 with -1 

Simplify 



COMPLEX NUMBERS 

You can find the complex conjugate 

of a complex number 

 

Simplify: 

 

 

With divisions you will need to write 

it as a fraction, then multiply both 

the numerator and denominator by 

the complex conjugate of the 

denominator 

 

(This is effectively the same as 

rationalising when surds are involved!) 

1C 

(10 + 5𝑖) ÷ (1 + 2𝑖) 

10 + 5𝑖

1 + 2𝑖
 ×  
1 − 2𝑖

1 − 2𝑖
 

=
(10 + 5𝑖)(1 − 2𝑖)

(1 + 2𝑖)(1 − 2𝑖)
 

=
10 + 5𝑖 − 20𝑖 − 10𝑖2

1 + 2𝑖 − 2𝑖 − 4𝑖2
 

=
10 − 15𝑖 − 10(−1)

1 − 4(−1)
 

=
20 − 15𝑖

5
 

= 4 − 3𝑖 

Multiply by the complex 
conjugate of the denominator 

Expand both 
brackets 

Group i terms, replace the i2 
terms with -1 (use brackets 

to avoid mistakes) 

Simplify terms 

Divide by 5 



COMPLEX NUMBERS 

You can find the complex conjugate 

of a complex number 

 

Simplify: 

 

 

With divisions you will need to write 

it as a fraction, then multiply both 

the numerator and denominator by 

the complex conjugate of the 

denominator 

 

(This is effectively the same as 

rationalising when surds are involved!) 

1C 

(5 + 4𝑖) ÷ (2 − 3𝑖) 

5 + 4𝑖

2 − 3𝑖
 ×  
2 + 3𝑖

2 + 3𝑖
 

=
(5 + 4𝑖)(2 + 3𝑖)

(2 − 3𝑖)(2 + 3𝑖)
 

=
10 + 8𝑖 + 15𝑖 + 12𝑖2

4 + 6𝑖 − 6𝑖 − 9𝑖2
 

=
10 + 23𝑖 + 12(−1)

4 − 9(−1)
 

=
−2 + 23𝑖

13
 

= −
2

13
+
23

13
𝑖 

Multiply by the complex 
conjugate of the denominator 

Expand both 
brackets 

Group i terms, replace the i2 
terms with -1 (use brackets 

to avoid mistakes) 

Simplify terms 

Split into two parts (this is 
useful for later topics!) 



COMPLEX NUMBERS 

You can find the complex conjugate 

of a complex number 

 

If the roots a and b of a quadratic 

equation are complex, a and b will 

always be a complex conjugate pair 

 

You can find what a quadratic 

equation was by using its roots 

 

Let us start by considering a 

quadratic equation with real 

solutions… 

1C 

𝑥2 + 7𝑥 + 10 = 0 

(𝑥 + 5)(𝑥 + 2) = 0 

𝑅𝑜𝑜𝑡𝑠 𝑎𝑟𝑒 − 5 𝑎𝑛𝑑 − 2 

Add the roots together 

−5 + (−2) 

= −7 

Multiply the roots 

−5 × (−2) 

= 10 

Factorise 

Solve 

Adding the 
roots gives the 
negative of the 

‘b’ term 

Multiplying the 
roots gives the 

‘c’ term 

This will work every time! 
 If you have the roots of a quadratic equation: 
 Add them and reverse the sign to find the ‘b’ term 
 Multiply them to find the ‘c’ term 



COMPLEX NUMBERS 

You can find the complex conjugate 

of a complex number 

 

If the roots a and b of a quadratic 

equation are complex, a and b will 

always be a complex conjugate pair 

 

You can find what a quadratic 

equation was by using its roots 

 

Let us start by considering a 

quadratic equation with real 

solutions… 

1C 

𝑥2 + 2𝑥 − 24 = 0 

(𝑥 + 6)(𝑥 − 4) = 0 

𝑅𝑜𝑜𝑡𝑠 𝑎𝑟𝑒 − 6 𝑎𝑛𝑑 4 

Add the roots together 

−6 + (4) 

= −2 

Multiply the roots 

−6 × (4) 

= −24 

Factorise 

Solve 

Adding the 
roots gives the 
negative of the 

‘b’ term 

Multiplying the 
roots gives the 

‘c’ term 



COMPLEX NUMBERS 

You can find the complex conjugate 

of a complex number 

 

Find the quadratic equation that has 

roots 3 + 5i and 3 – 5i 

1C 

Add the roots together 

3 + 5𝑖 + (3 − 5𝑖) 

= 6 

𝑆𝑜 𝑡ℎ𝑒 𝑏′ ′𝑡𝑒𝑟𝑚 𝑖𝑠 − 6 

Multiply the roots 

3 + 5𝑖 (3 − 5𝑖) 

= 9 + 15𝑖 − 15𝑖 − 25𝑖2 

𝑆𝑜 𝑡ℎ𝑒 𝑐′ ′𝑡𝑒𝑟𝑚 𝑖𝑠 34 

= 9 − 25(−1) 

= 34 

𝑇ℎ𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒: 

𝑥2 − 6𝑥 + 34 = 0 

Group 
terms 

Multiply out brackets 

Group the ‘i’ terms, 
replace i2 with -1 

Simplify 

Now you have the b and c coefficients, you can write the equation! 



COMPLEX NUMBERS 

You can represent complex numbers 
on an Argand diagram 

 

A grid where values for x and y can be 
plotted is known as a Cartesian set of 

axes (after Rene Descartes) 

 

An Argand diagram is very similar, but 
the x-axis represents real numbers 
and the y-axis represents imaginary 

numbers. 

 

Complex numbers can be plotted on an 
Argand diagram, by considering the 

real and imaginary parts as 
coordinates 

1D 



COMPLEX NUMBERS 

You can represent complex numbers on 
an Argand diagram 

 

Represent the following complex numbers 
on an Argand diagram: 

 

 

 

 

 

 

Find the magnitude of |OA|, |OB| and 
|OC|, where O is the origin of the Argand 
diagram, and A, B and C are z1, z2 and z3 

respectively 

 

 You can use Pythagoras’ Theorem to 
find the magnitude of the distances 

1D 

𝑧1 = 2 + 5𝑖 

𝑧2 = 3 − 4𝑖 

𝑧3 = −4 + 𝑖 

x (Real) 

y (Imaginary) 
z1 

z2 

z3 

2 

5 

4 

3 4 

1 

5 -5 

-5i 

5i 

𝑂𝐴 = 22 + 52 

𝑂𝐴 = 29 

𝑂𝐵 = 32 + 42 

𝑂𝐵 = 5 

𝑂𝐶 = 42 + 12 

𝑂𝐶 = 17 

√29 

5 

√17 



COMPLEX NUMBERS 

You can represent complex 

numbers on an Argand diagram 

 

 

 

Show z1, z2 and z1 + z2 on an Argand 

diagram 

 

1D 

𝑧1 = 4 + 𝑖 𝑧2 = 3 + 3𝑖 

𝑧1 + 𝑧2 

4 + 𝑖 + (3 + 3𝑖) 

= 7 + 4𝑖 

x (Real) 

y (Imaginary) 

10 -10 

-10i 

10i 

z1 

z2 

z1+z2 

Notice that vector z1 + z2 is effectively 
the diagonal of a parallelogram 



COMPLEX NUMBERS 

You can represent complex 

numbers on an Argand diagram 

 

 

 

Show z1, z2 and z1 - z2 on an Argand 

diagram 

 

1D 

𝑧1 = 2 + 5𝑖 𝑧2 = 4 + 2𝑖 

𝑧1 − 𝑧2 

2 + 5𝑖 − (4 + 2𝑖) 

= −2 + 3𝑖 

x (Real) 

y (Imaginary) 

5 -5 

-5i 

5i 
z1 

z2 

z1-z2 

Vector z1 – z2 is still the diagram of a 
parallelogram 

 
 One side is z1 and the other side is –z2 

(shown on the diagram) 

-z2 



COMPLEX NUMBERS 

You can find the value of r, the 

modulus of a complex number z, and 

the value of θ, which is the argument 

of z 

 

Find, to two decimal places, the modulus 

and argument of z = 4 + 5i 

1E 

x (Real) 

y (Imaginary) 

5 -5 

-5i 

5i 
z 

4 

5 

𝑟 = 42 + 52 

Use Pythagoras’ Theorem to find r 

𝑟 = 41 

𝑟 = 6.40 (2𝑑𝑝) 

Use Trigonometry to find arg z 

θ 

𝑇𝑎𝑛𝜃 =
𝑂

𝐴
 

𝑇𝑎𝑛𝜃 =
5

4
 

𝜃 = 0.90 𝑟𝑎𝑑𝑖𝑎𝑛𝑠 (2𝑑𝑝) 

Calculate 

Work out as a 
decimal (if needed) 

Sub in values 

Calculate in 
radians 



COMPLEX NUMBERS 

You can find the modulus-argument form of 
the complex number z 

 

You have seen up to this point that a complex 
number z will usually be written in the form: 

 

 

The modulus-argument form is an alternative 
way of writing a complex number, and it includes 

the modulus of the number as well as its 
argument. 

 

The modulus-argument form looks like this: 

 

 

r is the modulus of the number 

θ is the argument of the number 

1F 

𝑧 = 𝑥 + 𝑖𝑦 

𝑧 = 𝑟(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃) 

x (Real) 

y (Imaginary) 

z 

r 

rcosθ 

θ 

rsinθ 

By GCSE Trigonometry: 

S 
O 

H 

C 
A 

H 

𝑂𝑝𝑝 = 𝐻𝑦𝑝 × 𝑆𝑖𝑛𝜃 

𝐴𝑑𝑗 = 𝐻𝑦𝑝 × 𝐶𝑜𝑠𝜃 

Opp 

Adj 

Hyp 

= 𝑟𝑠𝑖𝑛𝜃 

= 𝑟𝑐𝑜𝑠𝜃 

𝑧 = 𝑟𝑐𝑜𝑠𝜃 + 𝑖𝑟𝑠𝑖𝑛𝜃 

𝑧 = 𝑟(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃) 
Factorise 



θ 

θ 

COMPLEX NUMBERS 

You can find the modulus-argument 

form of the complex number z 

 

Express the numbers following numbers 

in the modulus argument form: 

 

 

 

 

 

 

 

 

1F 

𝑧1 = 1 + 𝑖 3 

𝑧 = 𝑟(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃) 

𝑧2 = −3 − 3𝑖 

x (Real) 

y (Imaginary) 

3 

3 

1 

√3 

z1 

z2 

Modulus for z1 Argument for z1 

12 + 3
2
 

= 2 

𝑇𝑎𝑛−1
3

1
 

=
𝜋

3
 

𝑧1 = 𝑟(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃) 

𝑧1 = 2 𝑐𝑜𝑠
𝜋

3
+ 𝑖𝑠𝑖𝑛

𝜋

3
 

𝑧1 = 2 𝑐𝑜𝑠
𝜋

3
+ 𝑖𝑠𝑖𝑛

𝜋

3
 



θ 

θ 

COMPLEX NUMBERS 

You can find the modulus-argument 

form of the complex number z 

 

Express the numbers following numbers 

in the modulus argument form: 

 

 

 

 

 

 

 

 

1F 

𝑧1 = 1 + 𝑖 3 

𝑧 = 𝑟(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃) 

𝑧2 = −3 − 3𝑖 

x (Real) 

y (Imaginary) 

3 

3 

1 

√3 

z1 

z2 

Modulus for z2 Argument for z2 

32 + 32 

= 18 

𝑇𝑎𝑛−1
3

3
 

=
𝜋

4
 

𝑧2 = 𝑟(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃) 

𝑧2 = 3 2 𝑐𝑜𝑠 −
3𝜋

4

+ 𝑖𝑠𝑖𝑛 −
3𝜋

4
  

𝑧1 = 2 𝑐𝑜𝑠
𝜋

3
+ 𝑖𝑠𝑖𝑛

𝜋

3
 

= 3 2 

𝑧2 = 3 2 𝑐𝑜𝑠 −
3𝜋

4
+ 𝑖𝑠𝑖𝑛 −

3𝜋

4
 

= −
3𝜋

4
 

Remember the 
angle you actually 

want! 



θ 

θ 

COMPLEX NUMBERS 

You can find the modulus-argument form 
of the complex number z 

 

Express the numbers following numbers in 
the modulus argument form: 

 

 

 

 

 

 

 

 

 

Write down the value of |z1z2| 

 

 

 

 

1F 

𝑧1 = 1 + 𝑖 3 

𝑧 = 𝑟(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃) 

𝑧2 = −3 − 3𝑖 

x (Real) 

y (Imaginary) 

3 

3 

1 

√3 

z1 

z2 
𝑧1 = 2 𝑐𝑜𝑠

𝜋

3
+ 𝑖𝑠𝑖𝑛

𝜋

3
 

𝑧2 = 3 2 𝑐𝑜𝑠 −
3𝜋

4
+ 𝑖𝑠𝑖𝑛 −

3𝜋

4
 

𝑧1𝑧2  = 𝑧1||𝑧2  

= 2 × 3 2 

= 6 2 



You can find the modulus-argument form of 
the complex number z 

 

A complex number is represented in the 
modulus-argument form as: 

 

 

Write the number in the form: 

 

Start by sketching the number on an Argand 
diagram 

 

 The modulus is 4 

 The angle is positive and less than π/2, so 
the point is somewhere in the top right 

section 

 

 Work out x and y using Trigonometry… 

 

 

 

 

 

1F 

𝑧 = 𝑟(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃) 

x (Real) 

y (Imaginary) 

𝑧 = 4 𝑐𝑜𝑠
𝜋

6
+ 𝑖𝑠𝑖𝑛

𝜋

6
 

z 

4 

x 

𝑧 = 𝑥 + 𝑖𝑦 

y 
π 
6 

𝑥 = 𝑟𝑐𝑜𝑠𝜃 𝑦 = 𝑟𝑠𝑖𝑛𝜃 

𝑥 = 4𝑐𝑜𝑠
𝜋

6
 𝑦 = 4𝑠𝑖𝑛

𝜋

6
 

𝑥 = 2 3 𝑦 = 2 

𝑆𝑜:   𝑧 = 2 3 + 2𝑖 

Your sketch will help you decide whether answers are negative or positive! 
It will also help you confirm what angle you should use… 



COMPLEX NUMBERS 

You can solve problems involving 
complex numbers 

 

Problems can be solved by equating the 
real and imaginary parts of a complex 

equation 

 

This technique can also be used to 
square root a number 

 

Given that: 

 

 

Find the real values of a and b 

1G 

3 + 5𝑖 = (𝑎 + 𝑖𝑏)(1 + 𝑖) 

3 + 5𝑖 = (𝑎 + 𝑖𝑏)(1 + 𝑖) 

3 + 5𝑖 = 𝑎 + 𝑎𝑖 + 𝑏𝑖 + 𝑖2𝑏 

3 + 5𝑖 = 𝑎 + 𝑎𝑖 + 𝑏𝑖 + (−1)𝑏 

3 + 5𝑖 = 𝑎 + 𝑎𝑖 + 𝑏𝑖 + −𝑏 

3 + 5𝑖 = 𝑎 − 𝑏 + 𝑎𝑖 + 𝑏𝑖 

3 + 5𝑖 = 𝑎 − 𝑏 + 𝑖(𝑎 + 𝑏) 

Multiply out 
the bracket 

Replace i2 

Remove the 
bracket 

Move the real and 
imaginary terms together 

Factorise the 
imaginary terms 

As the equations balance, the real and imaginary parts will 
be the same on each side 

 Compare them and form equations 

𝑎 − 𝑏 = 3 

𝑎 + 𝑏 = 5 

1) 

2) 

2𝑎 = 8 

𝑎 = 4 

𝑏 = 1 

Add the equations 
together 

Solve for a 

Use a to find b 



COMPLEX NUMBERS 

You can solve problems involving 
complex numbers 

 

Problems can be solved by equating 
the real and imaginary parts of a 

complex equation 

 

This technique can also be used to 
square root a number 

 

Find the square roots of 3 + 4i 

 

 Let the square root of 3 + 4i be 
given by a + ib 

1G 

3 + 4𝑖 = 𝑎
+ 𝑖𝑏 

3 + 4𝑖 = 𝑎 + 𝑖𝑏 2 

3 + 4𝑖 = (𝑎 + 𝑖𝑏)(𝑎 + 𝑖𝑏) 

3 + 4𝑖 = 𝑎2 + 𝑎𝑏𝑖 + 𝑎𝑏𝑖 + 𝑖2𝑏2 

3 + 4𝑖 = 𝑎2 − 𝑏2 + 2𝑎𝑏𝑖 

Square both sides 

Multiply out the 
bracket  

Write as a double 
bracket 

Move real terms and 
imaginary terms 

together 

As the equations balance, the real and imaginary parts will 
be the same on each side 

 Compare them and form equations 

𝑎2 − 𝑏2 = 3 

2𝑎𝑏 = 4 

1) 

2) 

𝑎𝑏 = 2 

𝑏 =
2

𝑎
 

Divide by 2 

Divide by a 



 COMPLEX ANALYSIS 

38 



Argument of , 

Exercise: Find the modules and argument of the following: 

39 

POLAR FORM 



Euler Identity 𝑒𝑖𝜃 = cos 𝜃 + 𝑖 sin θ 

𝑒𝑖𝑥 = 1 + 𝑖𝑥 +
−1

2!
𝑥2 +
−𝑖

3!
𝑥3 +⋯ 

cos 𝑥 = 1 +
−1

2!
𝑥2 +⋯ 

𝑖 sin 𝑥 = 𝑖𝑥 +
−𝑖

3!
𝑥3 +⋯ 

Using identity, write 𝑧 = |𝑧|𝑒𝑖𝑎𝑟𝑔(𝑧) (Polar form) 
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Week 2 

Topics : Geometrical representations  

Page no (40-44) 



Examples: Describe geometrically the region of the following functions, 

(i) z-3z+3=2 (ii) z+3+z-3=10 

Solution: (i) Given that, 

If, , then 

42 



Squaring both sides, we get, 

which represents a circle of radius 4 and centre of (–5, 0) 

(ii) Given that, 

43 



Squaring both sides we get, 

Again squaring both sides, we get, 

which represents an ellipse passing through the points and 

Exercise: Describe geometrically the region of the following functions 

44 



Week 3 
Topics: Entire function, analytic function, 
Cauchy's Integral Formula  

Page no (44-52) 

Definition of Analytic Function: 

A function f(z) is said to be analytic at a point z if z is an interior point of some region where f(z) 

is analytic. Hence the concept of analytic function at a point implies that the function is analytic 

in some circle with center at this point. 

Definition of Entire Function: 

1. Entire Functions are related to the field of complex analysis, which is also called Integral 

Function. 
2. An entire function is a complex-valued function that is a complex differential in a 

neighborhood of each point in a domain in a complex coordinate space, also known as 

holomorphic on the whole complex plane. 
3. Every entire function can be represented as a power series. 

Examples of Entire Function: 

Polynomials and Exponential Functions are the entire functions as they are holomorphic on the 

whole complex plane. 

Cauchy's Integral Formula: 

Let is analytic inside and on the boundary of a simply connected closed curve C and is 

any point inside C. The 

Where C is traversed in the positive sense. 

Question: Evaluate Where C is the circle 

45 



Solution: 

Putting 

Let 

and 

 

in (1) we get 

 

and 

 

Therefore 

 

Hence 

 

Let 

 

. Since 

 

and are inside C and is analytic inside 

and on C, so use com apply Cauchy’s Integral formulae. Hence by Cauchy's integral formula we 

 

 

have 

Substituting those values in (2), we get 

Example: Evaluate , where C is the circle 

Solution: Here 

. Also 

is an analytic function. So is analytic inside and on the circle 

. . The point lies inside the circle . 

Hence by Cauchy integral formula we have 

46 



Question: Show that , where C is the circle and 

Solution: Here is analytic inside and on the given circle 

Again 

 

 

Let 

Putting and in (1) we get and 

Therefore 

 

 

Therefore 

Hence by Cauchy's integral formula we get 

 

and 

Substituting that value in (2), we get 

❒Evaluate the following: 

47 



48 

Analytic functions: If  f (z) is differentiable at z = z0 and within the neighborhood of 

z=z0,  f (z) is said to be analytic at z = z0. A function that is analytic in the whole 

complex plane is called an entire function. 
 

Cauchy-Riemann conditions for differentiability 

Cauchy-Riemann conditions  

𝑓′(𝑧) =
𝑑𝑓

𝑑𝑧
= lim
Δ𝑧→0

𝑓(𝑧 + Δ𝑧) − 𝑓(𝑧)

Δ𝑧
= lim
Δ𝑧→0

Δ𝑓(𝑧)

Δ𝑧
 

Cauchy-

Riemann 

conditions  
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Conversely, if the Cauchy-Riemann conditions are satisfied,  f (z) is differentiable: 

𝑑𝑓

𝑑𝑧
= lim
Δ𝑧→0

Δ𝑓(𝑧)

Δ𝑧
= lim
Δ𝑧→0

𝜕𝑢
𝜕𝑥
+ 𝑖
𝜕𝑣
𝜕𝑥
Δ𝑥 +

𝜕𝑢
𝜕𝑦
+ 𝑖
𝜕𝑣
𝜕𝑦
Δ𝑦

Δ𝑥 + 𝑖Δ𝑦
= lim
Δ𝑧→0

𝜕𝑢
𝜕𝑥
+ 𝑖
𝜕𝑣
𝜕𝑥
Δ𝑥 + −

𝜕𝑣
𝜕𝑥
+ 𝑖
𝜕𝑢
𝜕𝑥
Δ𝑦

Δ𝑥 + 𝑖Δ𝑦
 

= lim
Δ𝑧→0

𝜕𝑢
𝜕𝑥
+ 𝑖
𝜕𝑣
𝜕𝑥
Δ𝑥 + 𝑖Δ𝑦

Δ𝑥 + 𝑖Δ𝑦
=
𝜕𝑢

𝜕𝑥
+ 𝑖
𝜕𝑣

𝜕𝑥
,    and =

1

𝑖

𝜕𝑢

𝜕𝑦
+ 𝑖
𝜕𝑣

𝜕𝑦
. 

More about Cauchy-Riemann conditions: 
 

1)  It is a very strong restraint to functions of a complex variable. 

 

2)  

 

3) 

 
4) 

 

 

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑦
= 0 ⇒ 𝛻𝑢 ⋅ 𝛻𝑣 = 0 ⇒ 𝛻𝑢 ⊥ 𝛻𝑣 ⇒ 𝑢 = 𝑐1 ⊥ 𝑣 = 𝑐2 

𝑑𝑓

𝑑𝑧
=
𝜕𝑢

𝜕𝑥
+ 𝑖
𝜕𝑣

𝜕𝑥
=
𝜕𝑣

𝜕𝑦
− 𝑖
𝜕𝑢

𝜕𝑦
=
𝜕𝑢

𝜕(𝑖𝑦)
+ 𝑖
𝜕𝑣

𝜕(𝑖𝑦)
. 

Equivalent to 
𝜕𝑓

𝜕𝑧∗
= 0,   so that 𝑓(𝑧, 𝑧∗) only depends on 𝑧: 

𝜕𝑓

𝜕𝑧∗
=
𝜕𝑓

𝜕𝑥

𝜕𝑥

𝜕𝑧∗
+
𝜕𝑓

𝜕𝑦

𝜕𝑦

𝜕𝑧∗
=
𝜕𝑓

𝜕𝑥

1

2
+
𝜕𝑓

𝜕𝑦
−
1

2𝑖
= 0 ⇒

𝜕𝑓

𝜕𝑥
+ 𝑖
𝜕𝑓

𝜕𝑦
= 0 ⇒

𝜕𝑢

𝜕𝑥
+ 𝑖
𝜕𝑣

𝜕𝑥
+ 𝑖
𝜕𝑢

𝜕𝑦
+ 𝑖
𝜕𝑣

𝜕𝑦
= 0 ⇒ ⋯ 

e.g., 𝑓 = 𝑥 − 𝑖𝑦 is everywhere continuous but not analytic. 
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Cauchy’s theorem 
 

Cauchy’s integral theorem 

Contour integral: 

 

 

Cauchy’s integral theorem: If f (z) is analytic in a simply connected region R, [and f ′(z) 

is continuous throughout this region, ] then for any closed path C in R, the contour  
 

integral of f (z) around C is zero: 

 𝑓(𝑧)𝑑𝑧
𝑧2

𝑧1

=  (𝑢 + 𝑖𝑣)(𝑑𝑥 + 𝑖𝑑𝑦)
𝐶

=  (𝑢𝑑𝑥 − 𝑣𝑑𝑦) + 𝑖
𝐶

 (𝑣𝑑𝑥 + 𝑢𝑑𝑦)
𝐶

 

 𝑓(𝑧)𝑑𝑧 = 0
𝐶

 

Proof using Stokes’ theorem:   𝐕 ⋅  𝑑𝛌
 𝐶

= 𝛻 × 𝐕
𝑆

⋅ 𝑑𝛔 

  𝑉𝑥𝑑𝑥 + 𝑉𝑦𝑑𝑦 =
 𝐶

 
𝜕𝑉𝑦

𝜕𝑥
−
𝜕𝑉𝑥
𝜕𝑦𝑆

𝑑𝑥𝑑𝑦 

 𝑓(𝑧)𝑑𝑧
𝐶

=  (𝑢𝑑𝑥 − 𝑣𝑑𝑦)
𝐶

+ 𝑖 (𝑣𝑑𝑥 + 𝑢𝑑𝑦)
𝐶

 

=  −
𝜕𝑣

𝜕𝑥
−
𝜕𝑢

𝜕𝑦𝑆

𝑑𝑥𝑑𝑦 + 𝑖 
𝜕𝑢

𝜕𝑥
−
𝜕𝑣

𝜕𝑦𝑆

𝑑𝑥𝑑𝑦 

= 0 
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Contour deformation theorem: 

A contour of a complex integral can be arbitrarily 

deformed through an analytic region without changing 

the integral. 
 

1) It applies to both open and closed contours. 

2) One can even split closed contours. 

Proof: Deform the contour bit by bit. 

Examples: 

1) Cauchy’s integral theorem. 

(Let the contour shrink to a point.) 

2) Cauchy’s integral formula. 

(Let the contour shrink to a small 

circle.) 

Cauchy-Goursat proof:  The continuity of  f '(z) is not 

necessary. 
 

Corollary:  An open contour integral for an analytic 

function is independent of the path, if  there is no singular 

points between the paths.  

 𝑓(𝑧)𝑑𝑧
𝑧2

𝑧1

= 𝐹(𝑧2) − 𝐹(𝑧1) = − 𝑓(𝑧)𝑑𝑧
𝑧1

𝑧2

 

z1 

z2 

z1 

z2 
C2 

C1 

C1 

C2 

C1 

C2 C3 

“nails” 

“rubber bands” 
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Cauchy’s integral formula 

Cauchy’s integral formula: 

If f (z) is analytic within and on a closed contour C, then for any point z0 within C, 

𝑓(𝑧0) =
1

2𝜋𝑖
 
𝑓(𝑧)

𝑧 − 𝑧0
𝑑𝑧

𝐶

 

Proof: 

 
𝑓(𝑧)

𝑧 − 𝑧0
𝑑𝑧

𝐶

+ 
𝑓(𝑧)

𝑧 − 𝑧0
𝑑𝑧

𝐿1

+ 
𝑓(𝑧)

𝑧 − 𝑧0
𝑑𝑧

𝐶0

+ 
𝑓(𝑧)

𝑧 − 𝑧0
𝑑𝑧

𝐿2

= 0 

 
𝑓(𝑧)

𝑧 − 𝑧0
𝑑𝑧

𝐶

= − 
𝑓(𝑧)

𝑧 − 𝑧0
𝑑𝑧

𝐶0

= − 
𝑓(𝑧0 + 𝑟𝑒

𝑖𝜃)

𝑟𝑒𝑖𝜃

0

2𝜋

𝑟𝑖𝑒𝑖𝜃𝑑𝜃    (Let 𝑟

→ 0) 
= 2𝜋𝑖𝑓(𝑧0) 

C C0 

L1 

L2 

z0 

Can directly use the contour 

deformation theorem. 
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Derivatives of  f (z):  𝑓(𝑛)(𝑧0) =
𝑛!

2𝜋𝑖
 
𝑓(𝑧)

𝑧 − 𝑧0
𝑛+1
𝑑𝑧

𝐶

 

Corollary: If a function is analytic, then its derivatives of all orders exist. 

Corollary: If a function is analytic, then it can be expanded in Taylor series.  

Cauchy’s inequality: If                           is analytic and bounded,  
 

then  

𝑓(𝑧) = 𝑎𝑛 𝑧
𝑛 𝑓(𝑧) |𝑧|=𝑟 ≤ 𝑀, 

𝑎𝑛 𝑟
𝑛 ≤ 𝑀. (That is, 𝑎𝑛 is bounded.) 

Proof:  𝑓(𝑛)(0) = 𝑛! 𝑎𝑛 =
𝑛!

2𝜋𝑖
 
𝑓(𝑧)

𝑧𝑛+1
𝑑𝑧

|𝑧|=𝑟

⇒ 𝑎𝑛 =
1

2𝜋
 
𝑓(𝑧)

𝑧𝑛+1
𝑑𝑧

|𝑧|=𝑟

≤
𝑀

𝑟𝑛
⇒ 𝑎𝑛 𝑟

𝑛 ≤ 𝑀 

Liouville’s theorem: If a function is analytic and bounded in the entire complex plane, 

then this function is a constant. 

Proof:  𝑎𝑛 ≤
𝑀

𝑟𝑛
,    let 𝑟 → ∞,  then  𝑎𝑛 = 0 for 𝑛 > 0.  𝑓(𝑧) = 𝑎0. 

Fundamental theorem of algebra:                                                    has n roots. 

 

Suppose P(z) has no roots, then 1/P(z) is analytic and bounded as               Then P(z) is 

constant. That is nonsense. Therefore P(z) has at least one root we can divide out. 

𝑃(𝑧) =  𝑎𝑖𝑧
𝑖

𝑛

𝑖=0

  (𝑛 > 0, 𝑎𝑛 ≠ 0) 

𝑧 → ∞. 



Week 4 
Topics: Harmonic and 
Conjugate harmonic Page no 
(53-58) 
 

 

Harmonic Function: Harmonic functions occur regularly and play an essential role in maths and other 

domains like physics and engineering. In complex analysis, harmonic functions are called the solutions of the 

Laplace equation. Every harmonic function is the real part of a holomorphic function in an associated domain. 

In this article, you will learn the definition of harmonic function, along with some fundamental properties. 

Before learning about harmonic functions, let’s recall the definition of the Laplace equation. An equation 

having the second-order partial derivatives of the form. 

Question: Show that 

harmonic conjugate if 

is a harmonic function and hence finds its 

is analytic. 

Solution: Given that 
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is a harmonic function. 

Adding (3) and (4) we get, 

Therefore, satisfies Laplace equation, so 

 

Let be the harmonic conjugate of , so that is analytic. 

Putting in (1) and (2), we get and 

By Milne’s method we have 

So 

Then 

, where is a complex constant. 

Equating imaginary part from both sides we get 

Question: Show that 

harmonic conjugate if 

is a harmonic function and hence finds its 

is analytic. 
55 



Solution: Given that 

is a harmonic function. 

Adding (3) and (4) we get, 

Therefore, satisfies Laplace equation, so 

Let be the harmonic conjugate of , so that 

Putting in (1) and (2), we get 

 

By Milne’s method we have 

is analytic. 

and 

So 

Then 

, where is a complex constant. 

Equating imaginary part from both sides we get 
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Week 5 

Topics: Finding conjugate harmonics Page 

no (57-59) 

Question: Show that 

harmonic conjugate if 

is a harmonic function and hence finds its 

is analytic. 

Solution: Given that 

is a harmonic function. 

Adding (3) and (4) we get, 

Therefore, satisfies Laplace equation, so 

Let be the harmonic conjugate of , so that 

Putting in (1) and (2), we get 

 

By Milne’s method we have 

is analytic. 

and 

So , where is a complex constant. 
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Then 

Equating imaginary part from both sides we get 

Question: Show that 

harmonic conjugate if 

is a harmonic function and hence finds its 

is analytic. 

Solution: Given that 

Adding (3) and (4) we get, 

Therefore, satisfies Laplace equation, so is a harmonic function. 

Let be the harmonic conjugate of , so that is analytic. 

58 



Putting in (1) and (2), we get & 

By Milne’s method we have 

So 

Then 
, is a complex constant. 

Equating imaginary part from both sides we get 

Week 6: 
Topics: Cauchy’s Residue Page no 
(58-60) 

Question: Show that , where C is the circle and 

Solution: Here the circle . The poles of are obtain by solving the equation 

Both poles are double poles and lie inside the circle C, since 

Residue at is 

and 
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Similarly, residue at is 

Therefore, by Cauchy’s residue theorem we have 

Question: Show that , where C is the circle 

Solution: Here the circle . The poles of are obtain by solving the equation 

60 



Since and . Thus the pole is double pole and lie inside the circle C. 

Residue at is 

Therefore, by Cauchy’s residue theorem we have 

61 
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Laurent expansion: 

1) Singular points of the integrand.  

For n < 0, the singular points are determined by f (z). For n ≥0, the singular 

points are determined by both f (z) and 1/(z'-z0)
n+1. 

2) If f (z) is analytic inside C, then the Laurent series reduces to a Taylor series: 

 

 

 

 

3) Although an has a general contour integral form, In most times we need to use 

straight forward complex algebra to find an. 
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Week 7 
Topics: Laurent series 

 Page no (61-70) 
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Laurent expansion: Examples 

Example 1: Expand                         about z0=1. 
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Example 2: Expand                        about z0=i. 
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Branch points and branch cuts 
 

Singularities 

Poles: In a Laurent expansion 
 

then z0 is said to be a pole of order n. 

A pole of order 1 is called a simple pole. 

A pole of infinite order (when expanded about z0) is called an essential singularity.  
 

The behavior of a function f (z) at infinity is defined using the behavior of  f (1/t) at t = 0.  
 

Examples: 
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)1)(1()(   .2  zzzf

We can choose a branch cut from z = -1 to z = 1 (or any 

curve connecting these two points). The function will be 

single-valued, because both points will be circled. 

Alternatively, we can choose a branch cut which 

connects each branch point to infinity. The function will 

be single-valued, because neither points will be circled. 

It is notable that these two choices result in different 

functions. E.g., if                  , then   iif 2)( 

choice. second for the

2)( and choicefirst  for the  2)( iifiif 

A 
B 

A 
B 
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Inversion: 
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In Cartesian coordinates: 
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A straight line is mapped into a circle: 
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Question: Expand the function 

region: 

in a Laurent series for the following 

Solution: Given 

We write in a manner so that the binomial expansion is valid for 

We write in a manner so that the binomial expansion is valid for 
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Question: Expand the function 

region: 

in a Laurent series for the following 

Solution: Given 

Therefore, 

 

. Let 

When , then . When , then 

Therefore, from (1) we have 
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Therefore, from (1) we have 

Question: Solve the Partial Differential Equation 

 

 

Solution: Given the partial differential equation is 

The Lagrange auxiliary equations of (1) are 

Integrating, we get 
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Again (2), implies 

Integrating, we get 

From (3) and (4), the required general solution is 

arbitrary function. 

, where being an 

Question: Find the particular integrals of the following partial differential equation to represent 

surface passing through the given lines. 

 

 

Solution: Given the partial differential equation is 

And the line is 

The Lagrange auxiliary equations of (1) are 
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Integrating, we get 

Again (3), implies 

Integrating, we get 

By (2) and (4), and (5) implies 

 

Now, putting the values of and from (4) and (5) in (6), we obtain 

 

which is the required solut 

 

Week 8 

Topics: 2-D 

Geometry  

Page ( 70-73) 

 

Question: Transform to parallel axes through the point 1, 1 of the following equation 

17x2 18xy  7 y2 16x  32 y 18  0 

Solution: The given equation is 17x2 18xy  7 y2 16x  32 y 18  0 

Putting x  x 1 and y  y 1 in the equation (1), we get 

17  x 12 
18 x 1 y 1  7  y 12 

16  x 1  32  y 1 18  0 

1 
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 17 x2  2x 1 18 xy  x  y 1  7  y2  2 y 1 16  x 1  32  y 1 18  0 

 17x2  34x 17 18xy 18x 18 y 18  7 y2 14 y  7 16x 16  32 y  32 18  0 

2  17x2 18xy  7 y2  26  0 

Writing x for x and y for y in the equation (2), we obtain 

17x2 18xy  7 y2  26  0 which is required equation referred to the new axes. 

 

 

Question: Transform to parallel axes through the point 2, 3 of the following equation 

2x2  4xy  5 y2  4x  22 y  7  0 

Solution: The given equation is 1 2x2  4xy  5 y2  4x  22 y  7  0 

Putting x  x  2 and y  y  3 in the equation (1), we get 

2 x  22 
 4  x  2 y  3  5 y  32 

 4  x  2  22  y  3  7  0 

 2x2  4x  4  4  xy  3x  2 y  6  5 y2  6 y  9  4  x  2  22  y  3  7  0 

 2x2  8x  8  4xy 12x  8y  24  5y2  30 y  45  4x  8  22 y  66  7  0 

2  2x2  4xy  5y2  22  0 

Writing x for x and y for y in the equation (2), we obtain 

2x2  4xy  5 y2  22  0 which is required equation referred to the new axes. 

 

Question:  Transform to axes inclined at 450 to the original axes the following equation 

2x2  4xy  5 y2  22  0 

Solution: The given equation is 1 2x2  4xy  5 y2  22  0 

By the theorem we have x  xcos  ysin and y  xsin  ycos where   450 
is given. 

Therefore and 2 2 

72 

x  xcos 450  ysin 450  1  x  y y  xsin 450  ycos 450  1  x  y 

Putting the value of x and y in the equation (1), we get 



        

      

    

2 2  1 1  1 
2 2 2 

 

1 

2 

2 2 2 2  5 
2 

2 2 

2 2  5  5 
2 2 

 x2  2xy  y2  2x2  2 y2   5 x2  5xy   5 y2  22  0 

 11 x2  3xy   3 y2  22  0 
2 2 

 11x2  6xy  3y2  44  0 

 2 x  y  4   x  y x  y   5 x  y  22  0 

          x   2x y  y  2 x  y x  y   x   2x y  y  22  0 

    1 2  x   3x y  1 2  y  22  0 

2 

Writing x for x and y for y in the equation (2), we obtain 

11x2  6xy  3y2  44  0 which is the required transformed equation. 

 

Question:  Transform to axes inclined at 450 to the original axes the following equation 

3x2  2xy  3y2 1  0 

Solution: The given equation is 1 3x2  2xy  3y2 1  0 

By the theorem we have x  xcos  ysin and y  xsin  ycos where   450 
is given. 

Therefore and 2 2 
x  xcos 450  ysin 450  1  x  y y  xsin 450  ycos 450  1  x  y 

Putting the value of x and y in the equation (1), we get 

        

2 

2 2  1 1 1  1 
2 2 2 2 

 4x2  2 y2 1  0 

 3 x  y  2 x  y  x  y  3 x  y 1  0 

 3x2  2xy  y2   2  x  y x  y  3x2  2xy  y2   2  0 

 3x2  6xy  3y2  2x2  2 y2  3x2  6xy  3y2  2  0 

 8x2  4 y2  2  0 

Writing x for x and y for y in the equation (2), we obtain 

 4x2  2 y2 1  0 which is the required transformed equation. 
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Week 9: 

Topics: 2nd degree 

general equation Page 

(73-77) 

 
Question: Find the value of  so that the following equation may represent pair of straight lines 

6x2  2xy 12 y2  22x  31y  20  0 

Solution: The given equation is 1 6x2  2xy 12 y2  22x  31y  20  0 

Comparing (1) with the general equation second degree, we have 

2 
a  6, h  , b  12, g  11, f  

31
, c  20 

. 

Now the condition for a pair of straight line is   abc  2 fgh  af 2  bg 2  ch2  0 

    
2 2 2  31  31 

2 2 

 1440  341   2883 1452  20 2  0 
2 

 40 2  682  2907  0 

 6 12  20  2  11   6 12  11  20   0 

171 17 682  6822 
 4  40  2907 682  2 

  , 
2  40 80 20 2 

    

Question: Find the value of  so that the following equation may represent a pair of straight 

lines 

6x2 11xy 10 y2  x  31y    0 

Solution: The given equation is 1 6x2 11xy 10 y2  x  31y    0 

Comparing (1) with the general equation second degree, we have 

a  6, h  
11

, b  10, g  
1 

, f  
31

, c   
2 2 2 
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. 

Now the condition for a pair of straight line is   abc  2 fgh  af 2  bg 2  ch2  0 



          
2 2 2 

31  1 11  31  1 11 
2 2 2 2 2 2 

4 2 2 

4 

48 

 60   341   2883   5  605  0 

 60   7835  0 

  1567 

 6   10    2      6 20  0   10   

 

Question:  Prove that the equation x2  5xy  4 y2  x  2 y  2  0  represents a pair of straight 

lines. Also find their point of intersection and the angle between them. 

Solution:  The given equation is 1 x2  5xy  4 y2  x  2 y  2  0 

2 2 

Comparing (1) with the general equation second degree, we have 

 

a  1, h   
5 

, b  4, g  
1 

,  f  1, c  2 
. 

Now   abc  2 fgh  af 2  bg 2  ch2 

         
2 2 2  5  1 

2 
5  1 

2 2 

 5 

2 2 
 25 

2 
 1 4  2  21    11  4   2   8   11  0 

Thus the given equation represents a pair of straight lines 

Let 
S  x, y   x2  5xy  4 y2  x  2 y  2  0 

, then we have 

S  ,     2  5  4 2    2  2  0 

 

Let  ,   be the point of intersection of the given straight lines. Then we have 

3 
S  ,   S  ,   

 
 2  5 1  0 2 and 

 
 5  8  2  0 

Solving (2) and (3) we obtain   2 and   1 . 

Thus the point of intersection is 2,1 . 

Let  be the angle between the two lines, then we have 

  
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 3 
5 

1 3 

5 

2  25 1 4 2  h2  ab 
tan    4     tan 

a  b 1 4 



Prove that the equation 2x2  5xy  3y2  9x 11y 10  0 Question: represents a pair of 

straight lines. Also find their point of intersection and the angle between them. 

Solution:  The given equation is 1 2x2  5xy  3y2  9x 11y 10  0 

2 2 2 

Comparing (1) with the general equation second degree, we have 

 

a  2, h  
5 

, b  3, g   
9 

,  f   
11

, c  10 
. 

Now   abc  2 fgh  af 2  bg 2  ch2 

            
2 2 2 

9  5  5  9 

2 

11 

2 2 2 

11 

2 2 

4 4 4 4 4 

 2  310  2       2   

 60   495   242   243   250   240495242243250 

 3  10 

 0 

Thus the given equation represents a pair of straight lines 

Let 
S  x, y   2x2  5xy  3y2  9x 11y 10  0 

, then we have 

S  ,    2 2  5  3 2  9 11 10  0 

 

Let  ,   be the point of intersection of the given straight lines. Then we have 

3 
S  ,   S  ,   

 
 4  5  9  0 2 and 

 
 5  6 11  0 

Solving (2) and (3) we obtain   1 and   1 . 

Thus the point of intersection is 1,1 . 

Let  be the angle between the two lines, then we have 

  
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 1 
5 

1 1 

5 

2  25  2 3 2  h2  ab 
tan    4     tan 

a  b 2  3 

Question:  Prove that the straight lines represented by the equation 

ax2  2hxy  by2  2gx  2 f y  c  0 

will be equidistant from the origin if 
f 4  g 4  c bf 2  ag 2  

Solution:  Let the straight lines represented by the given equation be 



l x  my  n  0 and l x  my  n  0 1 

Then l x  my  nl x  my  n  ax2  2hxy  by2  2gx  2 f y  c 

 

 ll x2  mlxy  nlx  lmxy  mmy2  nmy  lnx  mny  nn  ax2  2hxy  by2  2gx  2 f y  c 

 llx2  lm  mlxy  mmy2  ln  nl x  mn  nmy  nn  ax2  2hxy  by2  2gx  2 f y  c 

which is an identity. 

Comparing the coefficients of both sides, we get 

lm  ml  2h, ln  nl  2g, mn  nm  2 f , 2 ll  a, mm  b, nn  c 

Since the lines are equidistance from the origin, we have 

n n 
 

l2  m2 l2  m2 

Squaring both sides, we get 

n2 
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n2 

 
l 2  m2 l2  m2 

 n2 l2  m2   n2 l 2  m2  

 n2l2  l 2n2  m2n2  n2m2 

 nl  nl nl  nl   mn  nmmn  nm 

Again squaring both sides, we have 

nl  nl 2 nl  nl 2 
 mn  nm2 mn  nm2 

 nl  nl 2 nl  nl 2 
 4llnn  mn  nm2 mn  nm2 

 4mmnn 
Substituting the values from equation (2), we obtain 

4g 2 4g 2  4ac  4 f 2 4 f 2  4bc 

 g 2 g 2  ac  f 2  f 2  bc 

 g 4  g 2ac  f 4  f 2bc 

 f 4  g 4  c bf 2  ag 2   Proved  



Week 10 

Topics: Plane 

Pages (77-80) 
 

 

Question: Find the equation of the plane through the three points 1, 0,1 , 1, 4, 2 and 2, 4,1 

. 

Solution: The equation of the required plane is 

ss 

x y z 1 

1 0 1 1 

1 4 2 1 

2 4 1 1 

 0 

Expanding with respect to the forth column, we get 

  x 14  0  y 0  3   z 10 12  0 

 4x  4  3y 12z 12  0 

x 1 y z 1 

 0 4 1  0 

3 0 1 

 4x  3y 12z  8  0 which is the required equation of the plane. 

Question: Find the equation of the plane through the three points 2, 2, 1 , 3, 4, 2 and 7, 0, 6 . 

Solution: The equation of the required plane is 

x y z 1 

2 2 1 

3 4 2 1 

7 0 6 1 
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1 
 0 



Using row operations, we have 

x  2 y  2 z 1 

1 2 3 

4 4 4 

7 0 6 

0 

0 

1 

0 
 0 

x  2 y  2 z 1 

 1 2 3  0 

4 4 4 
Expanding with respect to the forth column, we get 

  x  28 12   y  24 12   z 14  8  0 

 20  x  2  8 y  2 12  z 1  0 

 5 x  2  2  y  2  3 z 1  0 

 5x 10  2 y  4  3z  3  0 

5x  2 y  3z 17  0 which is the required equation of the plane. 

Question: Find the equation of the plane through the points 2, 2,1 and 9, 3, 6 and is 

perpendicular to the plane 2x  6 y  6z  9  0 

2 

Solution:  The equation of the plane through the points 2, 2,1 is 

a  x  2  b  y  2  c  z 1  0 1 
 

Since (1) passes through the point 9, 3, 6 , we get 7a  b  5c  0 

Again the plane (1) is perpendicular to the plane 2x  6 y  6z  9  0 . 

So we have 3 2a  6b  6c  0 

Now eliminating a, b, c from equation (1), (2) and (3) we obtain 

x  2 y  2 z 1 

7 1 

2 6 
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5  0 

6 

  x  26  30   y  210  42   z 142  2  0 

 24 x  2  32  y  2  40  z 1  0 

 3 x  2  4  y  2  5 z 1  0 



  3x  4 y  5z  9  0 which is the required equation of the plane. 

Question:  Find the equation of a plane which passes through the intersection of the planes 

7x  4 y  7z 16  0 and 4x  3y  2z  3  0 and parallel to the plane 3x  7 y  9z  5  0 

 

 

Solution:  The equation of a plane which passes through the intersection of the planes 

7x  4 y  7z 16  0 and 4x  3y  2z  3  0 is 

7x  4 y  7z 16  k 4x  3y  2z  3  0 1 

Or 4k  7 x  3k  4 y  2k  7 z  3k 16  0 2 

Since (2) is parallel to the plane 3x  7 y  9z  5  0 , we get 

4k  7 
 

3k  4 
 

2k  7 

3 7 9 

Taking first two equality we get 

4k  7 
 

3k  4 
 28k  49  9k 12  37k  37k  1 

3 7 

Substituting the value of k in (1), we obtain 

7x  4 y  7z 16  4x  3y  2z  3  0 

3x  7 y  9z 13  0 which is the required equation of the plane.  

Question:  Find the equation of a plane which passes through the intersection of the planes 

x  2 y  3z  4  0 and 2x  y  z  5  0 and perpendicular to the plane 5x  3y  6z  8  0 

1 

Solution:  The equation of a plane which passes through the intersection of the planes 

x  2 y  3z  4  0 and 2x  y  z  5  0 is x  2 y  3z  4  k 2x  y  z  5  0 

2k 1 x  k  2 y  k  3 z  5k  4  0 2 

Since (2) is perpendicular to the plane 5x  3y  6z  8  0 , we get 

52k 1  3k  2  6k  3  0 
7 
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 10k  5  3k  6  6k 18  0  7k  29  0 k   
29 

Substituting the value of k in (1), we obtain 



x  2 y  3z  4  
29 2x  y  z  5  0 
7 

 7x 14 y  21z  28  58x  29 y  29z 145  0 

 51x 15 y  50z 173  0 

 51x 15 y  50z 173  0 which is the required equation of the plane. 

Week 11 

Topics: Direction cosines  

Pages (80-85) 

Question: If l, m, n be the direction cosines of a line then show that l 2  m2  n2  1 

Solution: Let AB be the line which direction cosines are l, m, n . Through O draw a line OP 

parallel to AB , then the direction cosines of OP are also l, m, n . 

Let OP  r and P be the point  x, y, z  , then we have x  lr, y  mr and z  nr . 

Squaring and adding we get 

x2  y2  z2  r2 l 2  m2  n2  

 r2  r2 l 2  m2  n2  , since r2  OP2  x2  y2  z2 

 

 l 2  m2  n2  1 

 

 

Question: Find the angle between the lines whose direction ratios are 1, 1, 2 and 

3 1,   3 1, 4 . 

 

 

Solution: Let l1 , m1 , n1 be the direction cosines of the first line and l2 , m2 , n2  be those of the 

second line. Then we have 
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1 1 1 

1 1 1 

1 

6 

1 1 

6 

2 

6 
, n  

1 1 2 6 
l  , m  

l m n l2  m2  n2 

1    1   1  
12 12  22 

 

 

1 1 

4 24 2  6 

l m n l 2  m2  n2 

Again,  2    2    2   
3 1   3 1 

2 2 2 

3 12 

  3 12 

 42 

  

2 2 2 
2  6 2  6 6 

3 1
, m  

  3 1
, n   

2 
l   

Now if  be the angle between the lines, then 

cos  l1l2  m1m2  n1n2 

1 
 

3 1 
 

1 
 
  3 1 

 
2 

 
2 

6 2  6 6 2  6 6 6 

3 1 
 

  3 1 
 

4 
 

3 1  3 1 8 
 

6 
 

1 
 cos 

 

12 12 6 12 12 2 3 

3 
   

 

 

 

Question: A line makes angles  ,  ,  ,  with four diagonals of a cube. Prove that 

3 3 
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i ii cos2   cos2   cos2   cos2   
4 

sin2   sin2   sin2   sin2   
8 



Solution: 

The direction cosine of the diagonal OP are 
a  0 

, 
a  0 

, 
a  0 

or 
a  3  a  3  a  3 

 

The direction cosine of the diagonal AL are 
0  a 

, 
a  0 

, 
a  0 

or 
a  3  a  3  a  3 

 

The direction cosine of the diagonal BM are 
a  0 

, 
0  a 

, 
a  0 

or 

1 
, 

1 
, 

1 

3 3 3 

1 
, 

1 
, 

1 

3 3 3 

1 
, 

1 
, 

1 

3 3 3 

1 
, 

1 
, 

1 

a  3  a  3  a  3 3 3 3 

a  3  a  3  a  3 

 

The direction cosine of the diagonal CN are 
a  0 

, 
a  0 

, 
0  a 

or 

Let l, m, n be the direction cosines of the line which makes angles  ,  ,  ,  with the four 

diagonals OP, AL, BM and CN respectively. Then 

N 

X 

 

Let OCMANBLP be a cube whose each edge is a . The coordinates of the vertices are 

respectively, O 0, 0, 0 , Aa, 0, 0 , B 0, a, 0 , C 0, 0, a , P a, a, a , L 0, a, a , M a, 0, a and 

N a, a, 0 . Now OP  a  02 
 a  02 

 a  02 
 3a2  3a . Here the four diagonals 

OP, AL, BM and CN of the cube are equal. That is OP  AL  BM  CN  3a . 

Y 

M 

P 

C 

O 
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A 

Z 

B 

L 



1 cos  l 
 1  

 m 
 1  

 n 
 1  

 
l  m  n 

 3   3   3  3       

2 cos   l 
 1  

 m 
 1  

 n 
 1  

 
l  m  n 

 3   3   3  3       

3 cos   l 
 1  

 m 
 1  

 n 
 1  

 
l  m  n 

 3   3   3  3       

4 cos  l 
 1  

 m 
 1  

 n 
 1  

 
l  m  n 

 3   3   3  3       

Now squaring and adding (1), (2), (3) and (4), we obtain 

 
cos2   cos2   cos2   cos2   

1 l  m  n2 
 l  m  n2 

 l  m  n2 
 l  m  n2  

3   

 
4 l 2  m2  n2   

4 

3 3 
sin ce l 2  m2  n2  1 

3 
cos2   cos2   cos2   cos2   

4 

ii We have 
3 

cos2   cos2   cos2   cos2   
4 

  sin2   sin2   sin2   sin2   
8 

3 
or,1 sin2  1  sin2  1  sin2  1  sin2   

4 

3 3 
or, sin2   sin2   sin2   sin2   4  

4 
 

8 

3 

Question: Prove that the straight lines whose direction cosines are given by the relations 

f al  bm  cn  0 and fmn  gnl  hlm  0 are perpendicular if  
g 

 
h 

 0 and parallel if 
a b c 

af   bg  ch  0 . 
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Solution: The given relations are al  bm  cn  0 1 and 2 af   bg  ch  0 

Proof of first part: 

Eliminating n between (1) and (2), we get 

   3 
2 

 l   l  

m m 
 af  bg  ch  bf  0 

c 
 fm  gl  al  bm   hlm  0 

 ag 

  
  

 alfm  agl 2  bfm2  bglm  hclm  0 

 agl 2  af  bg  chlm  bfm2  0 

l which is a quadratic equation in . 
m 

Let  
l1 and 

l2  be the roots of the equation (3), then 
m1 m2 

1  2 

 f  

 g 

b 

  a  ll  bf 

m m ag 
product of roots,   1 2   4  f  

a 

g 

b 

l l m m 
or,  1 2     1  2  

Again eliminating l from (1) and (2), we obtain 5 
m1m2  

n1n2 

g 

b 
h 
c 

Combining (4) and (5), we get   1 2 1  2 1 2 

f 

a 

g 

b 
h 
c 

l l m m n n 
 k say   

Therefore l l  k  f  , m m  k  g , 
1 2 a 1  2 b 1 2 c 

n n  k  h 

Now two lines will be perpendicular if 

l1l2  m1m2  n1n2  0 i.e k 
f 

 
f 

a b c 
 k 

g 
 k 

h 
 0 

a b c 
 

g 
 

h 
 0 

Proof of second part: 

 
The two will be parallel if 

l1  
m1 

l2 m2 

 
l1   

l2 

m1 m2 
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That is, the two roots of the equation (3) are equal, the condition for which is 



af  bg  ch2 
 4  ag  bf  0 

 af  bg  ch2 
 4  ag  bf 

 af  bg  ch  2  ag  bf 

 af  2  af  bg  bg  ch 

  af  bg 2 

 ch 

 af  bg    ch 

  af  bg  ch  0 

Week 12: 

Topics: Parabola, 

Shortest Distance  

Pages (85-94) 
 

 

Question: Reduce the conic 4x2  4xy  y2  8x  6 y  5  0 to its standard form and also find its 

properties. 

Solution: The given equation of the conic is 4x2  4xy  y2  8x  6 y  5  0 1 

Comparing the equation (1) with second degree general equation 

ax2  2hxy  by2  2gx  2 fy  c  0 , we get a  4, h  2, b  1, g  4, f  3, c  5 

  abc  2 fgh  af 2  bg 2  ch2  20  48  36 16  20  100  0 and ab  h2  4  4  0 

Hence the given equation represents a parabola. 

Now the equation (1) can be written as 2x  y 2 
 8x  6 y  5 2 

Or, 2x  y   2 
 8  4  x  6  2  y   2  5 3 
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The two lines 2x  y    0 and 8  4  x  6  2  y   2  5  0 will be perpendicular if 

a1a2  b1b2  0 , that is 2 8  4   16  2   0  10 10  0   1 

Putting   1 in (3), we get 2x  y 12 
 4x  8 y  4  4  x  2 y 1 which can be written as 


2 

2 2 2 

2 2 2 

 x  2 y 1  
5  5  4 

2 

2x  y 1 

2 

2x  y 1 4  x  2 y 1  

 
 
 
 

 
 
 
 

 
2  

 1  


2 

  
 1  2  

  
5 

 
2   1  2 


  1  

Which is of the form Y 2  4 AX 4 

Where 4 A  
4  

, Y  
2x  y 1 

, X  
x  2 y 1 

5 5 5 

Equation (4) is the standard form of the parabola. 

i Length of the lotus rectum  4A  
4 

5 

ii Axis is Y  0, i.e, 2x  y 1  0 

iii Vertex is X  0, Y  0, i.e, x  2 y 1  0 and 2x  y 1  0 . 

Solving these above equations, we get  3 
, 
1  

 5 5    

iv Focus is  A, 0, i.e, X  A, Y  0 

Or, 
x  2 y 1 

 
1 

, 
2x  y 1 

 0 
5 5 5 

Or, x  2 y  2  0, 2x  y 1  0 

Solving the above two linear equations, we get the coordinates of the focus as  4 
, 

3  
 5  5    

 x  2 y  0 
5 

v Equation of the directrix is X   A , i.e, 
x  2 y 1 

  
1 

 x  2 y  2  0 
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5 

1 

5 
vi  Equation of the latus rectum is X  A , i.e, 

x  2 y 1 
 



vii  Foot of the directrix is  A, 0, i.e, X   A, Y  0 

Or, 
x  2 y 1 

  
1 

, 
2x  y 1 

 0 
5 5 5 

Or, x  2 y  0, 2x  y 1  0 

Solving the above two linear equations, we get the coordinates of the foot of the directrix as 

 2 
,  

1  
 5 5    

Question: Reduce the conic x2  4xy  4 y2 10x  8y 13  0 to its standard form and also find 

its properties. 

Solution: The given equation of the conic is x2  4xy  4 y2 10x  8 y 13  0 1 

Comparing the equation (1) with second degree general equation 

ax2  2hxy  by2  2gx  2 fy  c  0 , we get a  1, h  2, b  4, g  5, f  4, c  13 

ab  h2  4  4  0 

2 

  abc  2 fgh  af 2  bg 2  ch2  56  80 16 100  56  36  0 and 

Hence the given equation represents a parabola. 

Now the equation (1) can be written as  x  2 y 2 
 10x  8 y 13 

Or,  x  2 y   2 
 10  2  x  8  4  y   2 13 3 

The two lines x  2 y    0 and 10  2  x  8  4  y   2 13  0 will be perpendicular if 

1 2 1 2 
a a  b b  0 , that is 10  2   28  4   0  10  26  0 

5 
  

13 

Putting       13 13 
5 5 

13 2 12 

5 5 
in (3), we get x  2 y    2x  y  which can be written as 

  

5 

2 2 

 x  2 y  13 
2 

12  2x  y  13  
 

 5  
    

 5  
 

5 2 

x  2 y  13 12  2x  y  13  
 5   5  

 5  
 

22 12 
1   


2 

 
 
 

 
 
 
 

  

  5 5 5  5  

Which is of the form Y 2  4 AX 4 
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Where 4A  
12 

5 5 

x  2 y  13 

, Y   5  , 
5 

2x  y  13 

X   5  

5 

5 5 

Equation (4) is the standard form of the parabola. 

i Length of the lotus rectum  4A  
12 

ii Axis is Y  0, 
5 

i.e, x  2 y  13  0 

iii Vertex is X  0, 
5 

Y  0, i.e, 2x  y  13  0 and 
5 

x  2 y  13  0 . 

Solving these above equations, we get  39 
, 
13  

 25 25    

iv Focus is  A, 0, i.e, X  A, Y  0 

Or, 
x  2 y  13 
 5   0 

5 
, 

2x  y  13 3 
 5   

5 5 5 

Or, 2x  y  16  0, x  2 y  13  0 
5 5 

5 
Solving the above two linear equations, we get the coordinates of the focus as   

9 
, 

2  
 5    

2x  y  2  0 
5 5 5 

2x  y  13 3 
v Equation of the directrix is X   A , i.e,  5   

5 
2x  y  16  0 

3 

5 5 

2x  y  13 

vi  Equation of the latus rectum is X  A , i.e,  5    
5 

X   A, Y  0 vii  Foot of the directrix is  A, 0, i.e, 

Or, , 
2x  y  13 3 x  2 y  13 
 5   

5 5 5 

 5   0 
5 

5 
Or, 2x  y  2  0, x  2 y  13  0 

Solving the above two linear equations, we get the coordinates of the foot of the directrix as 

 
 

33 
, 

16  
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 
25 25    



Question: Find the shortest distance and the equation of the shortest distance line between the 

lines 
x 1 

 
y  2 

 
z  3 

and 
x  2 

 
y  4 

 
z  5 

2 3 4 3 4 5 

 

 

Solution: Let l, m, n be the direction cosines of the S.D, then since S.D is perpendicular to both 

the lines, we have 2l  3m  4n  0 and 3l  4m  5n  0 . 

15 16 12 10 8  9 

l m n l m n l 2  m2  n2 

  or,      
1 

6 1 2 1 

Hence the direction cosines of S.D are 

12  22 
12 

1 
, 

2 
, 

1 

6 6 6 

A point on the first line is say P 1, 2, 3 and a point on the second line is say Q 2, 4, 5 

Now length of S.D= Projection of PQ on the line S.D 

6 6 6 6 6 6 6 6 

1 magnitude S.D  2 1 1 
 4  2 2 

 5  3 1 1 
 

4 
 

2 
   

1  
 

Equation of the shortest distance 

The line of S.D is obtained by the intersection of 

(i) a plane containing first line and parallel to S.D 

(ii) a plane containing second line and parallel to S.D 

The equation of the plane containing first line and S.D is 

x 1 y  2 z  3 

2 3 4  0 , i.e, 11x  2 y  7z  6  0 

1 2 1 

1 

The equation of the plane containing second line and S.D is 

x  2 y  4 z  5 

2 4 5  0 , i.e, 7x  y  5z  7  0 

1 2 1 

2 

Now (1) and (2) together give equation of S.D 
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Question: Find the shortest distance and the equation of the shortest distance line between the 

lines 
x 1 

 
y  2 

 
z 1 

and 
x 1 

 
y  3 

 
z  4 

4 3 5 2 3 4 

 

 

Solution: Let l, m, n be the direction cosines of the S.D, then since S.D is perpendicular to both 

the lines, we have 4l  3m  5n  0 and 2l  3m  4n  0 . 

l m n l m n l2  m2  n2 1 

12 15 
 

10 16 
 

12  6 
or, 

3 
 

6 
 

6 
  

32  62  62 9 

2 
Hence the direction cosines of S.D are 

1 
, 
2 

, 
3 3 3 

A point on the first line is say P 1, 2,1 and a point on the second line is say Q 1, 3, 4 

Now length of S.D= Projection of PQ on the line S.D 

 
S.D  11 1 

 3  2 2 
 4 1 2 

  
2 

 
2 

 2  2 
3 3 3 3 3 

Equation of the shortest distance 

The line of S.D is obtained by the intersection of 

(i) a plane containing first line and parallel to S.D 

(ii) a plane containing second line and parallel to S.D 

 

The equation of the plane containing first line and S.D is 

x 1 y  2 z 1 

4 

3 

3 5   0 , i.e, 16x 13y  5z  5  0 

6 6 

1 

The equation of the plane containing second line and S.D is 

x 1 y  3 z  4 

2 

3 

3 4   0 , i.e, 14x  8 y  z  34  0 

6 6 

2 

Now (1) and (2) together give equation of S.D 

91 



Exercise: Find the shortest distance (S.D) and the equation of the shortest distance (S.D) line 

between the lines 
x  8 

 
y  9 

 
z 10 

and 
x 15 

 
y  29 

 
z  5 

3 16 7 3 8 5 

Question: Show that the lines 
x  5 

 
y  7 

 
z  3 

and 
x  8 

 
y  4 

 
z  5 

are coplanar. 
4 4 5 7 1 3 

Also find their common point and the equation of the equation of the plane in which they lie. 

1 1 
Solution: The given equations of the lines are 

x  5 
 

y  7 
 

z  3 
 r 

4 4 5 

and 2 2 

x  8 
 

y  4 
 

z  5 
 r 

7 1 

Now any point on the line (1) is 4r1  5, 4r1  7,  5r1  3 

3 

3 

4 and any point on the line (2)is 7r2  8, r2  4, 3r2  5 

If the two lines meet in a point, then for some values of r1 and r2 the points given by (3)and 

(4)must be identical. 

4r1  5  7r2  8, 4r1  7  r2  4,  5r1  3  3r2  5 

 4r1  7r2  3, 4r1  r2  3, 5r1  3r2  8 

Solving the first and second of the above equations, we get r1  1, r2  1 which also satisfy the 

third equation 5r1  3r2  8 . Hence the given two lines intersect and so they are coplanar. 

Putting the value of r1 and r2 in (3) and (4) respectively, we get 1, 3, 2 and 1, 3, 2 . 

Hence the required common point of intersection is 1, 3, 2 . 

The equation of the plane in which these lines lie is 

x  5 y  7 z  3 

4 

7 
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4 5   0 

1 3 

  x  512  5   y  735 12   z  34  28  0 

 17x  85  47 y  329  24z  72  0 

  17x  47 y  24z 172  0 



Question: Show that the lines  3x  2 y  z  5  0  x  y  2z  3 and 

2x  y  z 16  0  7x 10 y  8z 15 are mutually perpendicular. 

Solution: The given equation of the two lines are 3x  2 y  z  5  0  x  y  2z  3 1 

2 and 2x  y  z 16  0  7x 10 y  8z 15 

Let l1 , m1 , n1 be the direction cosines of (1), then we have 

3 

4 

3l1  2m1  n1  0 

l1  m1  2n1  0 

Now from (3) and (4) by cross multiplication, we get 
l1 m1 n1   

4 1 1 6 3  2 

1 1 1 l m n l 2  m2  n2 

Or,  1     1   1  
1 1 1 

1 1 1 
, n  

5 7 1 52 
 72 12 75 5 3 3 5 3 

1 7 
 l  , 

5 3 
m   

Again let l2 , m2 , n2 be the direction cosines of (2), then we have 

5 

6 

2l2  m2  n2  0 

7l2 10m2  8n2  0 

Now from (5) and (6) by cross multiplication, we get 
l2 m2 n2   

8 10 7 16 20  7 

2 2 2 

2 1 3 
, m  

14 

l m n l2  m2  n2 
1 

Or,  2    2   2  2 2 2  
2 1 3 22 12  32 14 14 14 

, n  l  

1 2 1  2 1 2 
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Here l l  m m  n n  
10  7  3 

 0 
5 3   14 

Hence the given two lines are mutually perpendicular. 

 

 

Exercise: Show that the lines  2x  3y  4z  5  0  3x  4 y  5z  6 and 

x  2 y  3z  3  0  2x  5 y  3z  3are mutually perpendicular. 



Question: Show that the lines  2x  3y  4z  0  3x  4 y  z  7 and 

5x  y  3z 12  0  x  7 y  4z  6 are parallel. 

Solution: The given equation of the two lines are 2x  3y  4z  0  3x  4 y  z  7 1 

2 and 5x  y  3z 12  0  x  7 y  4z  6 

Let l1 , m1 , n1 be the direction cosines of (1), then we have 

3 

4 

2l1  3m1  4n1  0 

3l1  4m1  n1  0 

Now from (3) and (4) by cross multiplication, we get 
l1 m1 n1   

3 16 12  2 8  9 

Or, 
l1  

m1  
n1 

13 14 17 
5 

Again let l2 , m2 , n2 be the direction cosines of (2), then we have 

6 

7 

5l2  m2  3n2  0 

l2  7m2  5n2  0 

Now from (6) and (7) by cross multiplication, we get 
l2 m2 n2   

5  21 3  25 35 1 

Or, 8 
l2  

m2 n2 l2  
m2  

n2 

13 14 17 
or,  

26 28 34 

Therefore from (5) and (8) it is clear that 
l1  

m1  
n1 

l2 m2 n2 
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Hence the given two lines are parallel. 

Exercise: Show that the lines  x  y  z  5  0  9x  5 y  z and 

6x  8 y  4z  3  0  x  8 y  6z  7 are parallel. 
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Vector: A vector is an object that has both a magnitude and a direction. A vector can be denoted as A, A, 

A⃗→, 𝐴. Suppose, 𝐴 = 𝑎𝚤 ̂ + 𝑏𝚥 ̂ + 𝑐𝑘̂, be a vector in 3-D, where 𝚤̂ , 𝚥̂ , 𝑘̂ are unit vectors along X, Y and Z-axis. 

We can also write it as A⃗→ = (𝑎, 𝑏, 𝑐). 

 

Magnitude of a vector: 

If A⃗→ = 𝑎𝚤 ̂ + 𝑏𝚥 ̂ − 𝑐𝑘̂ be a vector then the magnitude of A⃗→ is denoted by A or |⃗A→| and is defined as 

follows: 

𝐴 = |⃗A→| = √𝑎2 + 𝑏2 + (−𝑐)2 

 

 
Example: If B⃗→ = 2𝚤 ̂ + 4𝚥 ̂ − 5𝑘̂, then the magnitude of B⃗→ is, 

𝐵 = |⃗B→| = √22 + 42 + (−5)2 = √4 + 16 + 25 = √45 
 

 
Example:If A⃗→ = 4𝚤 ̂ − 3𝚥 ̂ + 2𝑘̂, B⃗→ = 5𝚤 ̂ − 4𝚥 ̂ + 3𝑘̂ , ⃗C→ = 2𝚤 ̂ − 4𝑗 + 2 𝑘̂ 

Then A⃗→ − 2B⃗→ + C⃗→ = 4𝚤 ̂ − 3𝚥 ̂ + 2𝑘̂ − 2(5𝚤 ̂ + 4𝚥 ̂ − 5𝑘̂) + 2𝚤 ̂ − 4𝑗 − 2𝑘̂.  

=4𝚤 ̂ − 3𝚥 ̂ + 2𝑘̂ − 10𝚤 ̂ − 8𝚥 ̂ + 10𝑘̂ + 2𝚤 ̂ − 4𝑗 − 2𝑘̂.  

=−4𝚤 ̂ − 15𝚥 ̂ + 10 𝑘̂ 

And |⃗A→ − 2⃗⃗⃗⃗B⃗→ + C⃗→| = √(−4)2 + (−15)2 + 102 = √341. 
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Vector addition, subtraction and scalar multiplication of vectors: 

Suppose, 𝐴 = 4𝚤 ̂ − 3𝚥 ̂ + 2𝑘̂ ,  𝐵 = 5𝚤 ̂ + 4𝚥 ̂ − 5 𝑘̂ and 𝐶 = 2𝚤 ̂ − 4𝑗 − 2 𝑘̂ 

Find the magnitude of  𝐴 + 𝐵 + 𝐶 𝑎𝑛𝑑 (3𝐵 − 5𝐶). 

are three vectors. 

Then, 𝐴 + 𝐵 + 𝐶 = 4𝚤 ̂ − 3𝚥 ̂ + 2𝑘̂ + 5𝚤 ̂ + 4𝚥 ̂ − 5𝑘̂ + 2𝚤 ̂ − 4𝑗 − 2𝑘̂ = 11𝚤 ̂ − 3𝚥 ̂ − 5 𝑘̂ 

https://mathinsight.org/definition/magnitude_vector


|𝐴 + 𝐵 + 𝐶| = √(11)2 + (−3)2 + (−5)2 = √155 

3𝐵 − 5𝐶 = 3. ( 5𝚤 ̂ + 4𝚥 ̂ − 5𝑘̂) − 5. ( 2𝚤 ̂ − 4𝑗 − 2𝑘̂) = 15𝚤 ̂ + 12𝚥 ̂ − 15𝑘̂ − 10𝚤 ̂ + 20𝚥 ̂ + 10 𝑘̂ 

= 5𝚤 ̂ + 32𝚥 ̂ − 5 𝑘̂ 

The magnitude of (3𝐵 − 5𝐶) is, 

|3𝐵 − 5𝐶| = √52 + 322 + (−5)2 = √25 + 1024 + 25 = √1074 

Vector product: There are two types of vector product. (i) Dot product,(ii) Cross product 

 

Dot product: If 𝐴 = 𝑎𝚤 ̂ + 𝑏𝚥 ̂ + 𝑐𝑘̂ and 𝐵 = ℎ𝚤 ̂ + 𝑙𝚥 ̂ + 𝑚𝑘̂ are two vectors then the dot product 

of  𝐴 𝑎𝑛𝑑 𝐵 𝑖𝑠 𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝑏𝑦 𝐴. 𝐵 and is defined as follows: 

𝐴. 𝐵 = (𝑎𝚤 ̂ + 𝑏𝚥 ̂ + 𝑐𝑘̂). (ℎ𝚤 ̂ + 𝑙𝚥 ̂ + 𝑚𝑘̂) = 𝑎ℎ + 𝑏𝑙 + 𝑐𝑚 

Since, 𝚤 ̂. 𝚤 ̂ = 𝚥̂. 𝚥 ̂ = 𝑘̂. 𝑘̂ = 1 𝑎𝑛𝑑 𝚤̂. 𝚥 ̂ = 𝚥̂. 𝑘̂ = 𝑘̂. 𝚤 ̂ = 0 

If 𝐴 𝑎𝑛𝑑 𝐵 are two vectors and 𝜃 be the angle between them then 

𝐴. 𝐵 = |𝐴||𝐵| 𝑐𝑜𝑠 𝜃 or,  |𝐴||𝐵|𝑐𝑜𝑠 𝜃 = 𝐴. 𝐵  𝑜𝑟,  𝑐𝑜𝑠 𝜃 = 
𝐴.𝐵 

|𝐴||𝐵| |𝐴||𝐵| 
or, 𝜃 = 𝑐𝑜𝑠−1 ( 𝐴.𝐵 ) 

Example: Suppose,  𝐴 = 4𝚤 ̂ − 3𝚥 ̂ + 2𝑘̂,  𝐵 = 5𝚤 ̂ + 4𝚥 ̂ − 5𝑘̂ 𝑎𝑛𝑑  𝐶 = 2𝚤 ̂ − 4𝑗 − 2 𝑘̂ 

(i) 

(ii) 

(iii) 

(iv) 

Find the value of (𝐴 + 𝐵). (𝐵 − 𝐶) 

Show that (𝐴 − 𝐵). 𝐶 = 𝐴. 𝐶 − 𝐵. 𝐶 

Show that (𝐴 + 𝐵). 𝐶 = 𝐴. 𝐶 + 𝐵. 𝐶 

Find the angle between 𝐴 𝑎𝑛𝑑 𝐵 and between 𝐵 𝑎𝑛𝑑 𝐶 

(v) Show that (𝐴 + 𝐵). (𝐴 − 𝐵) = |𝐴|
2
−|𝐵|

2 

Solution: (vi): 𝐴 + 𝐵 = 9𝚤 ̂ + 𝚥 ̂ − 3𝑘̂, (𝐴 − 𝐵) = −𝚤 ̂ − 7𝚥 ̂ + 7 𝑘̂ 

L.H.S=(𝐴 + 𝐵). (𝐴 − 𝐵) = (9𝚤 ̂ + 𝚥 ̂ − 3𝑘̂)(∙ −𝚤 ̂ − 7𝚥 ̂ + 7𝑘̂) = −9 − 7 − 21 = −37 

Again |𝐴| = √29 and |𝐵| = √52 + 42 + (−5)2 = √66 
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R.H.S=|𝐴|
2
−|𝐵|

2 
= 29 − 66 = −37 

𝐴. 𝐵 = (4𝚤 ̂ − 3𝚥 ̂ + 2𝑘̂) = 20 − 12 − 10 = 20 − 22 = −2 

Solution: (i) 𝐴 + 𝐵 = 4𝚤 ̂ − 3𝚥 ̂  + 2𝑘̂ + 5𝚤 ̂ + 4𝚥 ̂ − 5𝑘̂ = 9𝚤 ̂ + 𝚥 ̂ − 3 𝑘̂ (

𝐵 − 𝐶)=5𝚤 ̂ + 4𝚥 ̂ − 5𝑘̂ − 2𝚤 ̂ + 4𝑗 + 2𝑘̂ = 3𝚤 ̂ + 8𝑗 − 3 𝑘̂  

So, (𝐴 + 𝐵). (𝐵 − 𝐶)=( 9𝚤 ̂ + 𝚥 ̂ − 3𝑘̂).( 3𝚤 ̂ + 8𝑗 − 3𝑘̂) 

=27+8+9=44 

Solution (iv): Let 𝜃 be the angle between 𝐴 𝑎𝑛𝑑 𝐵. 

We know that, 𝐴. 𝐵 = |𝐴||𝐵| 𝑐𝑜𝑠 𝑐𝑜𝑠 𝜃 

|𝐴||𝐵| 
r,  𝜃 = 𝑐𝑜𝑠−1 ( 𝐴.𝐵 )……………….(i) 

Now, 𝐴. 𝐵 = −2, |𝐴| = √29 & |𝐵| = √66 

√29.√66 

  −2  
From (i) we get, 𝜃 = 𝑐𝑜𝑠−1 ( ) 
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Cross product: If 𝐴 = 𝑎𝚤 ̂ + 𝑏𝚥 ̂ + 𝑐𝑘̂ and 𝐵 = ℎ𝚤 ̂ + 𝑙𝚥 ̂ + 𝑚𝑘̂ are two vectors then the cross 

product of  𝐴 𝑎𝑛𝑑 𝐵 𝑖𝑠 𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝑏𝑦 𝐴 × 𝐵 and is defined as follows: 

 

 

𝚤̂ 𝚥̂ 𝑘̂ 
𝐴 × 𝐵 = | 𝑎 

ℎ 
𝑏 
𝑙 𝑚 

𝑐 | = (𝑏𝑚 − 𝑐𝑙)𝚤 ̂ − (𝑎𝑚 − 𝑐ℎ)𝚥 ̂ + (𝑎𝑙 − 𝑏ℎ) 𝑘̂ 



Example: If 𝐴 = 4𝚤 ̂ − 3𝚥 ̂ + 2𝑘̂ and 𝐵 = 5𝚤 ̂ + 4𝚥 ̂ − 5𝑘̂ are two vectors then find (𝐴 × 𝐵). 

𝚤̂ 𝚥̂ 𝑘̂ 
(𝐴 × 𝐵)=| 4 

5 
− 3 
4 

2 | = 7𝚤 ̂ + 30𝚥 ̂ + 31 𝑘̂ 

− 5 

(𝐵 × 𝐴) = −7𝚤 ̂ − 30𝚥 ̂ − 31𝑘̂ = −(7𝚤 ̂ + 30𝚥 ̂ + 31𝑘̂) = −(𝐴 × 𝐵) 

Again, If 𝐴 𝑎𝑛𝑑 𝐵 are two vectors and 𝜃 be the angle between them then 

𝐴 × 𝐵 = |𝐴||𝐵|𝑠𝑖𝑛 𝜃 
 

 
Unit vector: If 𝐴 be any vector and |𝐴| be the magnitude of 𝐴 then the unit vector along 𝐴 is 

|𝐴| 
denoted by 𝑎̂ and is defined as follows  𝑎̂ = 𝐴 

; |𝑎̂| = 1. 

The unit vector along (𝐴 × 𝐵) is = 
(𝐴×𝐵) 

|𝐴×𝐵| 

Question: If 𝐴 = 4𝚤 ̂ − 3𝚥 ̂ + 2𝑘̂ 𝑎𝑛𝑑 𝐵 = 5𝚤 ̂ − 4𝚥 ̂ − 5𝑘̂ then find the unit vector along (𝐴 + 𝐵). 

 

Solution: Given, 𝐴 = 4𝚤 ̂ − 3𝚥 ̂ + 2 𝑘̂ 𝑎𝑛𝑑  𝐵 = 5𝚤 ̂ + 4𝚥 ̂ − 5 𝑘̂ 

Now 𝐴 + 𝐵 = 4𝚤 ̂ − 3𝚥 ̂ + 2𝑘̂ + 5𝚤 ̂ + 4𝚥 ̂ − 5𝑘̂ = 9𝚤 ̂ + 𝚥 ̂ − 3 𝑘̂  

And |𝐴 + 𝐵| = √92 + 12 + (−3)2 = √81 + 1 + 9 = √91 

9 
So, the unit vector along (𝐴 + 𝐵) is = 

(𝐴+𝐵) 
= 9𝜄̂+𝑦̂−3𝑘̂ 

= 𝚤 ̂ + 𝚥 ̂ − 
1 3 

|𝐴+𝐵| √91 √91 √91 √91 
𝑘̂ 

Question: If 𝑃 = 4𝚤 ̂ − 2𝚥 ̂  + 3𝑘̂,  𝑄 = 7𝚤 ̂ + 2𝚥 ̂ − 5𝑘̂ 𝑎𝑛𝑑  𝑅 = 3𝚤 ̂ − 4𝑗 − 𝑘̂ . 

Then, find the unit vector along (𝑃 × 𝑄), (𝑃 + 𝑄 − 𝑅), (𝑃 − 2𝑄 − 3𝑅) and (𝑃 + 𝑄 + 𝑅) 
 

 
Theorem: If 𝐴 and 𝐵 are two vectors and 𝜃 be the angle between them then show that |𝐴. 𝐵|

2 
+ 

2 2 2 

|𝐴 × 𝐵|  = |𝐴| . |𝐵| 
 
 
Proof: We know that, If 𝐴 𝑎𝑛𝑑 𝐵 are two vectors and 𝜃 be the angle between them then 

𝐴. 𝐵 = |𝐴||𝐵|𝑐𝑜𝑠 𝜃  …………………..(i) 

&  𝐴 × 𝐵 = |𝐴||𝐵|𝑠𝑖𝑛 𝜃 …………………..(ii) 

Squaring and Adding (i) & (ii) we get, 
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2 2 2 

(𝐴. 𝐵)2 + (𝐴 × 𝐵)2 = |𝐴|
2
. |𝐵| 𝑠𝑖𝑛2𝜃 + |𝐴| . |𝐵| 𝑐𝑜𝑠2𝜃 

2 2 

= |𝐴| . |𝐵| (𝑠𝑖𝑛2𝜃 + 𝑐𝑜𝑠2𝜃 ) 

Or (𝐴. 𝐵)2 + (𝐴 × 𝐵)2 = |𝐴|
2
. |𝐵|

2  
[Since 𝑠𝑖𝑛2𝜃 + 𝑐𝑜𝑠2𝜃 = 1] 

2 2 2 2 

∴  |𝐴. 𝐵|  + |𝐴 × 𝐵|  = |𝐴| . |𝐵| 

Since in vector analysis (𝐴. 𝐵)2 = |𝐴. 𝐵|
2 

& (𝐴 × 𝐵)2 = |𝐴 × 𝐵|
2
. 

So, |𝐴. 𝐵|
2 

+ |𝐴 × 𝐵|
2 

= |𝐴|
2
. |𝐵|

2 
(Showed) 

2 

Question: If 𝐴 = 𝚤 ̂ + 3𝚥 ̂ + 𝑘̂ , 𝐵 = 2𝚤 ̂ + 4𝚥 ̂ − 5𝑘̂ , prove that|𝐴. 𝐵|
2 

+ |𝐴 × 𝐵|
2 

= |𝐴|
2
. |𝐵| 

 

 
Solution: Given, 𝐴 = 𝚤 ̂ + 3𝚥 ̂ + 𝑘̂ , 𝐵 = 2𝚤 ̂ + 4𝚥 ̂ − 5𝑘̂,  

So,|𝐴| = √12 + 32 + 12 = √1 + 9 + 1 = √11 

And |𝐵| = √22 + 42 + (−5)2 = √4 + 16 + 25 = √45. 

Also, 𝐴. 𝐵 = (𝚤 ̂ + 3𝚥 ̂ + 𝑘̂). (2𝚤 ̂ + 4𝚥 ̂ − 5𝑘̂) = 2 + 12 − 5 = 9 
 

 
𝚤̂ 𝚥̂ 𝑘̂ 

And 𝐴 × 𝐵 = | 1 
2 

3 
4 

1 
− 5 

| = (−15 − 4)𝚤 ̂— 5 − 2𝚥 ̂ + (4 − 6)𝑘̂ = −19𝚤 ̂ + 7𝚥 ̂ − 2 𝑘̂ 

|𝐴 × 𝐵| = √(−19)2 + 72 + (−2)2 = √414 

2 2 2 

L.H.S=|𝐴. 𝐵|
2 

+ |𝐴 × 𝐵|  = 81 + 414 = 495 and R.H.S= |𝐴| . |𝐵|  = 11.45=495 

2 

Hence, |𝐴. 𝐵|
2 

+ |𝐴 × 𝐵|
2 

= |𝐴|
2
. |𝐵|  (Proved) 

 

 

Exercise: If 𝐴 = 2𝚤 ̂ − 𝚥 ̂ + 4𝑘̂ , 𝐵 = 𝚤 ̂ − 4𝚥 ̂ + 3𝑘̂,  prove that |𝐴. 𝐵|
2 

+ |𝐴 × 𝐵|
2 

= |𝐴|
2
. |𝐵|

2 
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Del/delta: A vector valued function is denoted and defined as follows: 

𝛛𝑥 𝛛𝑦 𝛛𝑧 
∇⃗→= 𝛛 𝚤 ̂ + 𝛛 𝚥 ̂ + 𝛛 𝑘̂ 

Gradient: If 𝜑 be a scalar valued function then the gradient of 𝜑 is denoted by grad 𝜑 or 𝛻𝜑 and 

is defined as follows: 

grad 𝜑 = ∇⃗→𝜑 = (  𝛛  𝚤 ̂ + 𝛛 𝚥 ̂ + 𝛛 𝑘̂) 𝜑=
𝛛𝜑 𝚤 ̂ + 𝛛𝜑 𝚥 ̂ + 𝛛𝜑 𝑘̂ 

𝛛𝑥 𝛛𝑦 𝛛𝑧 𝛛𝑥 𝛛𝑦 𝛛𝑧 
 

 

Question: Suppose 𝜑 = 𝑥𝑦𝑧 then find the Gradient of 𝜑 at the point (2, 0, 1). 

Solution: Given, 𝜑 = 𝑥𝑦𝑧 

So, grad 𝜑 = ∇⃗→𝜑 = (  𝛛  𝚤 ̂ + 𝛛 𝚥 ̂ + 𝛛 𝑘̂) = 𝛛𝜑 𝚤 ̂ + 𝛛𝜑 𝚥 ̂ + 𝛛𝜑 𝑘̂ 
𝛛𝑥 𝛛𝑦 𝛛𝑧 𝛛𝑥 𝛛𝑦 𝛛𝑧 

= 
𝛛 𝑥𝑦𝑧 𝚤 ̂ + 𝛛 𝑥𝑦𝑧 𝚥 ̂ + 𝛛 (𝑥𝑦𝑧) 𝑘̂ 
𝛛𝑥 𝛛𝑦 𝛛𝑧 

= 𝑦𝑧. 1 𝚤 ̂ + 𝑥𝑧. 1 𝚥 ̂ + 𝑥𝑦. 1 𝑘̂ 

∇⃗→𝜑 = 𝑦𝑧 𝚤 ̂ + 𝑥𝑧 𝚥 ̂ + 𝑥𝑦 𝑘̂ 

At the point (2, 0, 1), grad 𝜑 = ∇⃗→𝜑 = 0 ∙ 1 𝚤 ̂ + 2 ∙ 1 𝚥 ̂ + 2 ∙ 0 𝑘̂ = 2 𝚥 

Question: Suppose 𝜑 = (𝑥𝑧 − 𝑦2) then find the Gradient of 𝜑 at the point (3, -1, 1). 

𝛛𝑥 𝛛𝑦 𝛛𝑧 
Solution: 𝒈𝒓𝒂𝒅 𝜑 = ∇⃗→𝜑 = 𝛛 (𝑥𝑧 − 𝑦2)𝚤 ̂ + 𝛛 (𝑥𝑧 − 𝑦2)𝚥 ̂ + 𝛛 (𝑥𝑧 − 𝑦2 )𝑘̂ 

= (𝑧. 1 − 0)𝚤 ̂ + (0 − 2𝑦)𝚥 ̂ + (𝑥. 1 − 0) 𝑘̂ 

= 𝑧𝚤 ̂ − 2𝑦𝚥 ̂ + 𝑥 𝑘̂ 

At the point (3, -1, 1), grad 𝜑 = 𝛻𝜑 = 1 𝚤 ̂ − 2(−1)𝚥 ̂ + 3 𝑘̂ = 𝚤 ̂ + 2 𝚥 ̂ + 3 𝑘̂ 

 
 
Question: Suppose 𝜑 = 2𝑥𝑧 − 𝑦𝑧 then find the Gradient of 𝜑 at the point (2, -1, 0). 

𝜕𝑥 𝜕𝑦 𝜕𝑧 
𝑔𝑟𝑎𝑑 𝜑 = ∇⃗→𝜑 = 

𝜕 
(2𝑥𝑧 − 𝑦𝑧) 𝚤 ̂ + 

𝜕 
(2𝑥𝑧 − 𝑦𝑧) 𝚥 ̂ + 

𝜕 
(2𝑥𝑧 − 𝑦𝑧) 𝑘̂ 

100 

= (2𝑧. 1 − 0)𝚤 ̂ + (0 − 𝑧. 1)𝚥 ̂ + (2𝑥. 1 − 𝑦. 1) 𝑘̂ 

= 2𝑧 𝚤 ̂ − 𝑧 𝚥 ̂ + (2𝑥 − 𝑦) 𝑘̂ 



At the point (2, -1, 0), grad 𝜑 = ∇⃗→𝜑 = 2 ∙ 0 𝚤 ̂ − 0 𝚥 ̂ + (2 ∙ 2 + 1)𝑘̂ = 5 𝑘̂ 

 

Divergence: If A⃗→ = 𝑓𝚤 ̂ + 𝑔𝚥 ̂ + ℎ𝑘̂ be a vector valued function then the divergence of A⃗→ is denoted 

by div A⃗→ or ∇⃗→ ∙ A⃗→ and is defined as follows: 

div 𝐴 or ∇⃗→ ∙ A⃗→ = (  𝛛  𝚤 ̂ + 𝛛 𝚥 ̂ + 𝛛 𝑘̂) ∙ (𝑓𝚤 ̂ + 𝑔𝚥 ̂ + ℎ𝑘̂) = 𝛛𝑓 + 𝛛𝑔 + 𝛛ℎ 
𝛛𝑥 𝛛𝑦 𝛛𝑧 𝛛𝑥 𝛛𝑦 𝛛𝑧 

 

 

Question-1: If A⃗→ = 𝑥𝑧 𝚤 ̂ − 𝑥𝑦 𝚥 ̂ + 𝑦𝑧 𝑘̂  then find the Divergence of A⃗→ at the point (1,-1, 2). 

Solution: Given, A⃗→ = 𝑥𝑧 𝚤 ̂ − 𝑥𝑦 𝚥 ̂ + 𝑦𝑧 𝑘̂ 

𝛛𝑥 𝛛𝑦 𝛛𝑧 

 𝛛  𝛛 𝛛 
Now, div A⃗→ or ∇⃗→ ∙ A⃗→ = ( 𝚤 ̂ + 𝚥 ̂ + 𝑘̂) ∙( 𝑥𝑧 𝚤 ̂ − 𝑥𝑦 𝚥 ̂ + 𝑦𝑧 𝑘̂)  

= 
𝛛 (xz) − 𝛛 (xy) + 𝛛 (yz) = z − x + y 
𝛛x 𝛛y 𝛛z 

 

 

At the point (1,-1, 2), div 𝐴 or ∇⃗→ ∙ A⃗→ = 2 − 1 − 1 = 0 
 

 
Question-2: If A⃗→ = 𝑥2𝚤 ̂ − 𝑧2𝚥 ̂ − 𝑦2𝑧𝑘̂ then find the Divergence of 𝐴 at the point (-3,0, 2). 

 
∇⃗→ ∙ A⃗→ = 

𝜕 
(𝑥2) − 

𝜕 
(𝑧2) − 

𝜕 
(𝑦2𝑧) = 2𝑥 − 0 − 𝑦2 = 2𝑥 − 𝑦2 

𝜕𝑥 𝜕𝑦 𝜕𝑧 

At the point (-3, 0, 2) ,div ⃗A→ or ⃗∇→ ∙ A⃗→ = 2(−3) − 0 = −6 
 

 
Exercise: Let P⃗→ = 𝑥2𝑦𝑧 𝚤 ̂ − (𝑥𝑧 − 𝑦2)𝚥 ̂ − 𝑦𝑧 𝑘̂ , find the Divergence of ⃗⃗𝑃⃗→ at the point (2, 1, -3). 

Curl: If A⃗→ = 𝑓𝚤 ̂ + 𝑔𝚥 ̂ + ℎ𝑘̂ be a vector valued function then the curl of A⃗→ is denoted by curl A⃗→ 

or ⃗∇→ × A⃗→ and is defined as follows: 

𝚤̂ 𝚥̂ 𝑘̂ 

curl A⃗→ = ∇⃗→ × A⃗→ = | 𝛛 𝛛 𝛛 

𝛛𝑥 𝛛𝑦 𝛛𝑧 

𝑓 𝑔 ℎ 
𝛛𝑦 𝛛𝑧 𝛛𝑥 𝛛𝑧 

𝛛ℎ 𝛛𝑔 𝛛ℎ 𝛛𝑓 𝛛𝑔 𝛛𝑓 

𝛛𝑥 𝛛𝑦 
| = 𝚤 ̂ ( − ) − ( − ) 𝚥 ̂ + ( − ) 𝑘 
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̂ 

Question: If 𝐴→ = 𝑥2𝚤 ̂ − 𝑧2𝑗 + 𝑦2𝑘̂ then find the Curl of 𝐴→ at the point (1,0, 1). 



Solution: Given,  𝐴→ = 𝑥2𝚤 ̂ − 𝑧2𝑗 + 𝑦2 𝑘̂. 
 

 

𝚤̂ 𝚥̂ 𝑘̂ 

∇⃗→ × A⃗→ = | 
𝜕 𝜕 

𝜕𝑥 𝜕𝑦 𝜕𝑧 

𝑥2 −𝑧2 𝑦2 

𝜕 
| 

𝜕 𝜕 𝜕 𝜕 𝜕 𝜕 
= ( 𝑦2 + 𝑧2) 𝚤 ̂ − ( 𝑦2 − 𝑥2) 𝚥 ̂ + (− 𝑧2 − 𝑥2) 𝑘̂ 

𝜕𝑦 𝜕𝑧 𝜕𝑥 𝜕𝑧 𝜕𝑥 𝜕𝑦 

= (2𝑦 + 2𝑧)𝚤 ̂ − (0 − 0)𝚥 ̂ + (0 − 0) 𝑘̂ 

= (2𝑦 + 2𝑧)𝚤 

At the point (1,0, 1), A⃗→ or 𝛻⃗→ × A⃗→ = (2.0 + 2.1)𝚤 ̂ = 2 𝚤 
 

 
Exercise: If A⃗→ = 𝑥𝑦𝚤 ̂ − 𝑦𝑧𝚥 ̂ + 𝑧2𝑘̂ then find the Curl of 𝐴 at the point (-1,1, 2). 

 

 

Question: Suppose, 𝑃⃗→ = 𝑥𝑦 𝚤 ̂ − 𝑦𝑧 𝚥 ̂ + 𝑧2 𝑘̂ , Q⃗→ = 𝑦𝚤 ̂ + 2𝑥𝚥 ̂ − 3𝑧𝑘̂ , R⃗→ = 𝑥2𝚤 ̂ − 𝑧2𝚥 ̂ − 𝑦2𝑘̂ and 

𝜑 = 𝑥𝑦𝑧. Show that (𝑖) (𝑃⃗→ ∙ ∇⃗→)𝜑 = (⃗∇→𝜑) ∙ 𝑃⃗→  𝑎𝑛𝑑 (𝑖𝑖)(𝑅⃗→ ∙ ∇⃗→)𝜑 = (⃗∇→𝜑) ∙ 𝑅⃗→ ( 𝒚𝒐𝒖𝒓𝒔𝒆𝒍𝒇) 
 
 

Solution: (i) 

Here, 𝑃⃗→ ∙ ∇⃗→= (𝑥𝑦𝚤 ̂ − 𝑦𝑧𝚥 ̂ + 𝑧2𝑘̂). (  𝛛  𝚤 ̂ + 𝛛 𝚥 ̂ + 𝛛 𝑘̂) = 𝑥𝑦 𝛛 − 𝑦𝑧 𝛛 + 𝑧2 𝛛 

𝛛𝑥 𝛛𝑦 𝛛𝑧 𝛛𝑥 𝛛𝑦 𝛛𝑧 
 

Therefore (𝑃⃗→ ∙ ∇⃗→)𝜑 = (𝑥𝑦 𝛛 − 𝑦𝑧 𝛛 + 𝑧2 𝛛 ) (𝑥𝑦𝑧) 
𝛛𝑥 𝛛𝑦 𝛛𝑧 

𝜕 𝜕 𝜕 
= 𝑥𝑦 (𝑥𝑦𝑧) − 𝑦𝑧 (𝑥𝑦𝑧) + 𝑧2 (𝑥𝑦𝑧) 

𝜕𝑥 𝜕𝑦 𝜕𝑧 

= 𝑥𝑦. 𝑦𝑧 − 𝑦𝑧. 𝑥𝑧 + 𝑧2. 𝑥𝑦 = 𝑥𝑦2𝑧 

𝛛𝑥 𝛛𝑦 𝛛𝑧 

 𝛛  𝛛 𝛛 
Again, 𝛻⃗→𝜑 = ( 𝚤 ̂ + 𝚥 ̂ + 𝑘̂) (𝑥𝑦𝑧) 

= 
𝛛 (𝑥𝑦𝑧) 𝚤 ̂ + 𝛛 (𝑥𝑦𝑧) 𝚥 ̂ + 𝛛 (𝑥𝑦𝑧)𝑘̂ 
𝛛𝑥 𝛛𝑦 𝛛𝑧 

= 𝑦𝑧 𝚤 ̂ + 𝑥𝑧 𝚥 ̂ + 𝑥𝑦 𝑘̂ 

(⃗∇→𝜑) ∙ 𝑃⃗→ = (𝑦𝑧 𝚤 ̂ + 𝑥𝑧 𝚥 ̂ + 𝑥𝑦 𝑘̂). (𝑥𝑦𝚤 ̂ − 𝑦𝑧𝚥 ̂ + 𝑧2𝑘̂ ) 
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= 𝑥𝑦2𝑧 − 𝑥𝑦𝑧2 + 𝑥𝑦𝑧2 = 𝑥𝑦2𝑧. 

Thus (𝑃⃗→ ∙ ∇⃗→)𝜑 = (⃗∇→𝜑) ∙ 𝑃⃗→  (Showed) 

 

 

Question: Prove (𝑖)  ∇⃗→ ∙ (𝑄⃗→ + 𝑅⃗→) = ∇⃗→ ∙ 𝑄⃗→ + ∇⃗→ ∙ 𝑅⃗→  (𝑖𝑖)⃗∇→ ∙ (𝑃⃗→ + 𝑄⃗→) = ∇⃗→ ∙ 𝑃⃗→ + ∇⃗→ ∙ 𝑄⃗→ (𝒚𝒐𝒖𝒔𝒆𝒍𝒇) 
 

 
Solution: Here 𝑄⃗→ + 𝑅⃗→ = 𝑦𝚤 ̂ + 2𝑥𝚥 ̂ − 3𝑧𝑘̂ + 𝑥2𝚤 ̂ − 𝑧2𝑗 − 𝑦 2 𝑘̂ 

= (𝑥2 + 𝑦) 𝚤 ̂ + (2𝑥 − 𝑧2) 𝚥 ̂ − ( 3𝑧 + 𝑦2) 𝑘̂ 

𝜕𝑥 𝜕𝑦 𝜕𝑧 
∇⃗→ ∙ (𝑄⃗→ + 𝑅⃗→) = ( 

𝜕 
𝚤 ̂ + 

𝜕 
𝚥 ̂ + 

𝜕 
𝑘̂) . {(𝑥2 + 𝑦) 𝚤 ̂ + (2𝑥 − 𝑧2) 𝚥 ̂ − ( 3𝑧 + 𝑦2) 𝑘̂}  

=
 𝛛  (𝑥2 + 𝑦) + 𝛛 (2𝑥 − 𝑧2) − 𝛛 ( 3𝑧 + 𝑦2) = 2𝑥 + 0 − 3 = 2𝑥 − 3 
𝛛𝑥 𝛛𝑦 𝛛𝑧 

𝛛𝑥 𝛛𝑦 𝛛𝑧 
Again, ∇⃗→ ∙ 𝑄⃗→ =( 

𝛛 𝚤 ̂ + 𝛛 𝚥 ̂ + 𝛛 𝑘̂).( 𝑦𝚤 ̂ + 2𝑥𝚥 ̂ − 3𝑧𝑘̂ 

𝜕 𝜕 𝜕 

𝜕𝑥 𝜕𝑦 𝜕𝑧 
= (𝑦) − (2𝑥) − (3𝑧) = 0 − 0 − 3 = −3 

𝛛𝑥 𝛛𝑦 𝛛𝑧 
And ∇⃗→ ∙ 𝑅⃗→ =( 

𝛛 𝚤 ̂ + 𝛛 𝚥 ̂ + 𝛛 𝑘̂).( 𝑥2𝚤 ̂ − 𝑧2𝑗 − 𝑦2𝑘̂) 

= 𝛛 (𝑥2) − 𝛛 (𝑧2) − 𝛛 (𝑦2) = 2𝑥 − 0 − 0 = 2𝑥 
𝛛𝑥 𝛛𝑦 𝛛𝑧 

∇⃗→ ∙ 𝑄⃗→ + ∇⃗→ ∙ 𝑅⃗→ = −3 + 2𝑥 = 2𝑥 − 3. 

Thus ∇⃗→ ∙ (𝑄⃗→ + 𝑅⃗→) = ∇⃗→ ∙ 𝑄⃗→ + ∇⃗→ ∙ 𝑅⃗→  (Proved) 

 

 

Question: (a) If 𝜑 = 𝑥2𝑦𝑧 then prove that 𝛻⃗→ × (⃗∇→𝜑) = 0. 

(b) If 𝜑 = 𝑥𝑦𝑧 and 𝐴 = 𝑥𝑧𝚤 ̂ − 𝑦2𝚥 ̂ + 𝑧2 𝑘̂ then show that  𝛻⃗→ ∙ ( 𝛻⃗→ × A⃗→) = 0. 
 
 

Solution: (a) 

 
∇⃗→𝜑 = (

 𝜕  
𝚤 ̂ + 

𝜕 
𝚥 ̂ + 

𝜕 
𝑘̂) 𝜑 = 

𝜕𝜑 
𝚤 ̂ + 

𝜕𝜑 
𝚥 ̂ + 

𝜕𝜑 
𝑘̂ 

𝜕𝑥 𝜕𝑦 𝜕𝑧 𝜕𝑥 𝜕𝑦 𝜕𝑧 

𝜕 𝜕 𝜕 
= (𝑥2𝑦𝑧) 𝚤 ̂ + (𝑥2𝑦𝑧) 𝚥 ̂ + (𝑥2𝑦𝑧) 𝑘̂ 
𝜕𝑥 𝜕𝑦 𝜕𝑧 

= 2𝑥𝑦𝑧 𝚤 ̂ + 𝑥2𝑧 𝚥 ̂ + 𝑥2𝑦 𝑘̂ 
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Now, 𝛻⃗→ × (⃗∇→𝜑) = | 

𝚤̂ 𝚥̂ 𝑘̂ 
𝛛 

𝛛𝑥 

2𝑥𝑦𝑧 

𝛛 

𝛛𝑦 

𝑥2𝑧 

𝛛 

𝛛𝑧 

𝑥2𝑦 

| 

𝜕 𝜕 𝜕 𝜕 𝜕 𝜕 
= 𝚤 ̂ { (𝑥2𝑦) − (𝑥2𝑧)} − 𝚥 ̂ { (𝑥2𝑦) − (2𝑥𝑦𝑧)} + 𝑘̂ { (𝑥2𝑧) − (2𝑥𝑦𝑧)} 

𝜕𝑦 𝜕𝑧 𝜕𝑥 𝜕𝑧 𝜕𝑥 𝜕𝑦 

= (𝑥2 − 𝑥2)𝚤 ̂ − (2𝑥𝑦 − 2𝑥𝑦)𝚥 ̂ + (2𝑥𝑧 − 2𝑥𝑧)𝑘̂ = 0. 
 
 

𝚤̂ 𝚥̂ 𝑘̂ 

(b) 𝛻⃗→ × A⃗→ = | 
𝛛 

𝛛𝑥 

𝛛 

𝛛𝑦 

− 𝑦2 

𝛛𝑧 

𝑧2 

𝛛 
| 

𝑥𝑧 

𝜕 𝜕 𝜕 𝜕 𝜕 𝜕 
= 𝚤 ̂ ( 𝑧2 + 𝑦2) − 𝚥 ̂ ( 𝑧2 − 𝑥𝑧) + 𝑘̂ (− 𝑦2 − 𝑥𝑧) 

𝜕𝑦 𝜕𝑧 𝜕𝑥 𝜕𝑧 𝜕𝑥 𝜕𝑦 

= (0 + 0)𝚤 ̂ − (0 − 𝑥. 1)𝚥 ̂ + (−0 − 0)𝑘̂ = 𝑥𝚥 

Now, 𝛻⃗→ ∙ (𝛻⃗→ × A⃗→) = (  𝛛  𝚤 ̂ + 𝛛 𝚥 ̂ + 𝛛 𝑘̂) . (𝑥𝚥 ̂) = 𝛛 (𝑥) = 0. 
𝛛𝑥 𝛛𝑦 𝛛𝑧 𝛛𝑦 

Question: If 𝜑 = 𝑥𝑦𝑧2 and A⃗→ = 𝑥2𝚤 ̂ − 𝑧2𝚥 ̂ − 𝑦 2 𝑘̂  then show 𝛻⃗→ ∙ (φ⃗A→) = (𝛻⃗→φ) ∙ A⃗→ + 𝜑(𝛻⃗→ ∙ A⃗→) 
 

 
Solution: Here φA⃗→ = 𝑥𝑦𝑧2. (𝑥2𝚤 ̂ − 𝑧2𝚥 ̂ − 𝑦2𝑘̂) = 𝑥3𝑦𝑧2𝚤 ̂ − 𝑥𝑦𝑧4𝚥 ̂ − 𝑥𝑦3𝑧2𝑘̂ 

𝛛𝑥 𝛛𝑦 𝛛𝑧 

 𝛛  𝛛 𝛛 
So, 𝛻⃗→ ∙ (φ⃗A→) = ( 𝚤 ̂ + 𝚥 ̂ + 𝑘̂) . (𝑥3𝑦𝑧2𝚤 ̂ − 𝑥𝑦𝑧4𝚥 ̂ − 𝑥𝑦3𝑧2𝑘̂) 

𝜕 𝜕 𝜕 
= (𝑥3𝑦𝑧2) − (𝑥𝑦𝑧4) − (𝑥𝑦3𝑧2) 
𝜕𝑥 𝜕𝑦 𝜕𝑧 

= 3𝑥2𝑦𝑧2 − 𝑥𝑧4 − 2𝑥𝑦3𝑧 

Also, 𝛻⃗→φ = (  𝛛  𝚤 ̂ + 𝛛 𝚥 ̂ + 𝛛 𝑘̂) . 𝑥𝑦𝑧2 = 𝛛 (𝑥𝑦𝑧2) 𝚤 ̂ + 𝛛 (𝑥𝑦𝑧2) 𝚥 ̂ + 𝛛 (𝑥𝑦𝑧2) 𝑘̂ 
𝛛𝑥 𝛛𝑦 𝛛𝑧 𝛛𝑥 𝛛𝑦 𝛛𝑧 

= 𝑦𝑧2 𝚤 ̂ + 𝑥𝑧2 𝚥 ̂ + 2𝑥𝑦𝑧𝑘̂ 

Therefore (𝛻⃗→φ) ∙ A⃗→ = (𝑦𝑧2 𝚤 ̂ + 𝑥𝑧2 𝚥 ̂ + 2𝑥𝑦𝑧𝑘̂) ∙ (𝑥2𝚤 ̂ − 𝑧2𝚥 ̂ − 𝑦2𝑘̂) = 𝑥2𝑦𝑧2 − 𝑥𝑧4 − 2𝑥𝑦3𝑧 

𝛛𝑥 𝛛𝑦 𝛛𝑧 

 𝛛  𝛛 𝛛 
Again, 𝜑(𝛻⃗→ ∙ A⃗→) = 𝑥𝑦𝑧2 [( 𝚤 ̂ + 𝚥 ̂ + 𝑘̂) ∙ (𝑥2𝚤 ̂ − 𝑧2𝚥 ̂ − 𝑦2𝑘̂)] 
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= 𝑥𝑦𝑧2 { 
𝜕 

(𝑥2) − 
𝜕 

(𝑧2) − 
𝜕 

(𝑦2)} = 2𝑥2𝑦𝑧2 

𝜕𝑥 𝜕𝑦 𝜕𝑧 

(𝛻⃗→φ) ∙ A⃗→ + 𝜑(𝛻⃗→ ∙ A⃗→) = 2𝑥2𝑦𝑧2 + 𝑥2𝑦𝑧2 − 𝑥𝑧4 − 2𝑥𝑦3𝑧 = 3𝑥2𝑦𝑧2 − 𝑥𝑧4 − 2𝑥𝑦3𝑧 
 

 
Hence,  𝛻⃗→ ∙ (φA⃗→) = (𝛻⃗→φ) ∙ A⃗→ + 𝜑(𝛻⃗→ ∙ A⃗→) (Showed) 

Week 15 

Topics: Vector integration, 

Green’s theorem Pages (104- 107) 

 
Vector Integration: If 𝑅(𝑢) = 𝑟1(𝑢)𝚤̂ + 𝑟2(𝑢)𝚥 ̂ + 𝑟3(𝑢)𝑘̂ then 

∫ 𝑅(𝑢)𝑑𝑢 = ∫{𝑟1(𝑢)𝚤̂ + 𝑟2(𝑢)𝚥 ̂ + 𝑟3(𝑢)𝑘̂}𝑑𝑢. 

= 𝚤 ̂ ∫ 𝑟1(𝑢)𝑑𝑢 + 𝚥 ̂ ∫ 𝑟2(𝑢)𝑑𝑢 + 𝑘̂ ∫ 𝑟3(𝑢)𝑑𝑢 

0 
Question: Suppose 𝑅(𝑢) = 3𝚤 ̂ + (𝑢3 + 4𝑢7)𝚥 ̂ + 𝑢𝑘̂. Find∫ 𝑅(𝑢)𝑑𝑢 and ∫

2 
𝑅(𝑢)𝑑𝑢. 

Solution: Given, 𝑅(𝑢) = 3𝚤 ̂ + (𝑢3 + 4𝑢7)𝚥 ̂ + 𝑢𝑘̂.  
 

 

So, ∫ 𝑅(𝑢)𝑑𝑢 = ∫{3𝚤 ̂ + (𝑢3 + 4𝑢7)𝚥 ̂ + 𝑢𝑘̂}𝑑𝑢 

= 3𝑢𝚤 ̂ + ( 
𝑢4 𝑢8 

4 8 

𝑢 2 

2 

𝑢4 𝑢8 

4 2 

𝑢 2 

2 
̂ ̂ + 4. ) 𝚥 ̂ + 𝑘 + 𝑐 = 3𝑢𝚤 ̂ + ( + ) 𝚥 ̂ + 𝑘 + 𝑐 

Again, 

2 

0 
∫ 𝑅(𝑢)𝑑𝑢 = ∫ 3 7) ̂ 2 

𝑢4 𝑢8 𝑢 2 

4 2 2 
̂ = [3𝑢𝚤 ̂ + ( + ) 𝚥 ̂ + 𝑘] 

0 

0 {3𝚤 ̂ + (𝑢  + 4𝑢 𝚥 ̂ + 𝑢𝑘}𝑑𝑢 

2 

24 28 

4 2 

22 

2 
= 3(2 − 0)𝚤 ̂ + ( + − 0 − 0) 𝚥 ̂ + ( − 0)𝑘 = 6𝚤 ̂ + 132𝚥 ̂ + 2𝑘 
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̂ ̂ 

Exercise: 



1. 
0 

Suppose 𝑅(𝑢) = (2𝑢3 − 6𝑢) 𝚤 ̂ − 3𝑢5 𝚥 ̂ − 32𝑢 𝑘̂. Find ∫ 𝑅(𝑢)𝑑𝑢 and ∫
3 
𝑅(𝑢)𝑑𝑢. 

Ans: 36 𝚤 ̂ − 192 𝑘̂ 

−1 
2.  Suppose 𝑃(𝑢) = 2𝑢𝚤 ̂ + (𝑢 − 3𝑢4)𝚥 ̂ − 𝑢2𝑘̂. Find ∫ 𝑃(𝑢)𝑑𝑢 and ∫

2 
𝑃(𝑢)𝑑𝑢. 

10 
Ans: 3 𝚤 ̂ − 183 𝚥 ̂ − 3 𝑘̂ 

** If the position vector of a point is 𝒓 = 𝒙𝜾̂ + 𝒚𝗝̂ + 𝒛𝒌̂ then 𝒅𝒓 = 𝒅𝒙𝜾̂ + 𝒅𝒚𝗝̂ + 𝒅𝒛𝒌̂.  
 

 

Question: If 𝐹→ = 2𝑥 𝚤 ̂ − 𝑥𝑦2 𝚥 ̂ + 𝑦𝑧3 𝑘̂ , then find the value of ∫ 𝐹→. 𝑑𝑟→ 
 

 
Solution: Here ∫ 𝐹→. 𝑑𝑟→ = ∫(2𝑥𝚤 ̂ − 𝑥𝑦2𝚥 ̂ + 𝑦𝑧3𝑘̂). (𝑑𝑥𝚤 ̂ + 𝑑𝑦𝚥 ̂ + 𝑑𝑧𝑘̂) 

= ∫(2𝑥 𝑑𝑥 − 𝑥𝑦2 𝑑𝑦 + 𝑦𝑧3 𝑑𝑧) = 2 ∙ 𝑥
2 
− 𝑥 ∙ 𝑦

3 
+ 𝑦 ∙ 𝑧

4 
+ 𝑐 

2 3 4 

= 𝑥2 − 𝑥𝑦
3 

+ 𝑦𝑧
4 

+ 𝑐  (Ans:) 
3 4 

Question: If 𝐹→ = 𝑥𝑧𝚤 ̂ − 𝑦2𝚥 ̂ + 𝑚𝑧5𝑘̂ and 𝑓 = 𝑥𝑦2𝑧 find the value of ∫ 𝐹→. 𝑑𝑟→ and∫ 𝑓. 𝑑𝑟→ 

 
Green’s Theorem: Let R be a simply connected plane region whose boundary is a simple, 

closed, piecewise smooth curve C oriented counterclockwise. If f  x, y  and 
g  x, y  are 

continuous and have continuous first partial derivatives on some open set containing R, then 

f  x, y  dx  g  x, y  dy  
 g 

 
f  

dA 

R  
 
c 

 x y   

Example-1: Find the work done by the force field F  x, y, z   ex  y3 î   cos y  x3  ̂ j on a 

 

particle that travels once around the unit circle x2  y2  1 in the counterclockwise direction. 
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Solution: 

The work W performed by the field is 

W  c 
F  dr 

  ex  y3 dx  cos y  x3 dy 
c 

  
  cos y  x3   

  ex  y3  
x y dA 

R   

 3x2  3y2 dA 
R 

 3x2  y2 dx dy 
R 

2 1 

 3  r 2 r dr d 
0 0 

 r 4 
1 

3 
 3    2 

 
 4  

0 2 
0 

Example-2: Use a line integral to find the area enclosed by the ellipse 
x2 y2 

a2 b2 
  1 

0 

0 

0 

2 

1 

2 

2 

 ab  sin2   cos2  d 

1 
2 

 ab  1d  ab 
2 

c 

1 2 

Solution: The ellipse, with counterclockwise orientation, can be represented parametrically by 

x  a cos , y  b sin , 0    2 

If we denote this curve by C , then the area A enclosed by the ellipse is 

A  
1 

 x dy  y dx 

  b sin a sin   a cos b cos d 
2 

y 

x 
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Use Green’s Theorem to evaluate the integral. In each exercise, assume that the curve C is 

oriented counterclockwise. 

 

1. c 
x2  2 y2 dx  x dy , where C  is the circle x2  y2  9 . 

2. c 
y tan2 x dx  tan x dy , where C  is the circle x2   y 12 

 1. 

3. c 
x2  3y dx  3x dy , where C  is the circle x2  y2  4 . 

4. c 
ex  y2 dx  ey  x2 dy , where C is the boundary of the region between y  x2 & y  2x 

5.  c 
x2 y dx  y2 x dy , where C is the boundary of the region in the first quadrant, enclosed 

between the coordinate axes and the circle x2  y2  16 . 

Week 16 & 17 

Topics: Divergence Theorem and , Stokes 

theorem  

Page no (107-112) 

 

Divergence theorem: Let 𝐺 be a solid whose surface σ is oriented outward. 

If F  x, y, z   f  x, y, z î   g  x, y, z  ĵ  h  x, y, z kˆ where f , g , and h  have continuous 

first partial derivatives on some open set containing 𝐺 , and if n is the outward unit normal on 𝜎, 

then 

 F n̂ dS   div F dV 
 G 

 

 

 

Example: Use the Divergence Theorem to find the outward flux of the vector field 

F  x, y, z   x3î   y3 ĵ  z2kˆ across the surface of the region that is enclosed by the circular 

cylinder x2  y2  9 and the planes z  0 and z  2 
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Solution: Let σ denote the outward-oriented surface and G the region that it encloses. The 

divergence of the vector field is div F  
  x3   

   y3   
  z2   3x2  3y2  2z 

x y z 

Therefore, the flux across σ is 

 F  n̂ dS  3x2  3y2  2z dV 
 G 

2 3 2 

   3r 2  2z r dz dr d 
0 0 0 

2 3 2 

   3r3 z  z2r  dr d 
z 0 

0 0 

2 3 

  6r3  4r dr d 
0 0 

2  6 r 4 
3 

    2r 2 
 d 

0  4 0 

279 2 

  d  279 
2 0 

Example: Use the Divergence Theorem to find the outward flux of the vector field 

F  x, y, z   x3î   y3 ĵ  z3kˆ across the surface of the region that is enclosed by the hemisphere 

 

z  a2  x2  y2  and the plane z = 0 

 

Solution: Let σ denote the outward-oriented surface and G the region that it encloses. The 

divergence of the vector field is div F  
  x3   

   y3   
  z3   3x2  3y2  3z2 

x y z 

Therefore, the flux across σ is 
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 F  n̂ dS  3x2  3y2  3z2 dV 
 G 

2 
 

a      2   2 sin  d d d 
2 

3 
0 0 0 

2 
 

a 2 

 3     4 sin  d d d 
0 0 0 

a 
2 

 

  5  2 

 3    5  sin  d d 
0 0   0 

 

3a5 2 2 

  sin  d d 
5 0 0 

3a5 2 
 

   cos 2 d 
5 0 

0 

3a5 2 6a5 

  d  
5 0 5 

Use the Divergence Theorem to find the flux of F across the surface σ with outward 

orientation. 

1. F  x, y, z   z î   x  ĵ  y k 
, where  is the sphere x2  y2  z2  a2 

3 3 3  ̂
 

 

 

 

2.  
F  x, y, z    x  z  î    y  x ĵ   z  y  k̂ 

, where  is the surface of the cylindrical solid 

bounded by x2  y2  a2 

, z  0 , and z  1. 

3. F  x, y, z   x î   y ĵ  z k̂ 
;  is the surface of the solid bounded by the paraboloid 

z  4  x2  y2 

and the xy-plane. 

 

 

4. F  x, y, z   x3 î   y3 ĵ  z3 k̂ 
;  is the surface of the cylindrical solid bounded by 

x2  y2  4 , z  0 , and z  3 . 
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5. 
F  x, y, z   x  e  î    y  sin z  ĵ  z  xy k 

, where  is the surface of the solid 
3 y 3 3  ̂

4  x2  y2 

bounded above by z  and below by the xy-plane 

6. 
F  x, y, z   4xz î   yz ĵ  z k 

, where  is the surface of the solid bounded above by 
2  ̂

a2  x2  y2  

and below by the xy-plane. 
z  

Stokes’ Theorem: Let  be a piecewise smooth oriented surface that is bounded by a simple, 

closed, piecewise smooth curve C with positive orientation. 

If F  x, y, z   f  x, y, z î   g  x, y, z  ĵ  h  x, y, z kˆ where f , g , and h are continuous and 

have continuous first partial derivatives on some open set containing  , and nˆ is the unit normal 

vector, then c 
F  dr  curl F  n̂ dS 

 

 

Example: Verify Stokes’ Theorem for the vector field F  x, y, z   2z î   3x ĵ  5y k̂ , taking  

to be the portion of the paraboloid z  4  x2  y2 

for which z  0 with upward orientation, and 

C to be the positively oriented circle x2  y2  4 that forms the boundary of σ in the xy-plane. 

 

Solution: Since σ is oriented up, the positive orientation of C is counterclockwise looking down 

the positive z-axis. Thus, C can be represented parametrically (with positive orientation) by 

x  2 cos t,  y  2 sin t,  z  0,  0  t  2 

111 

Therefore, 



  

2 

  0  6 cos t 2 cos t   0 dt 

0 

2 

  12 cos2 t dt 
0 

2 

0 

 6 1 cos 2t  dt 
0 

 F  dr   2z dx  3x dy  5 y dz 
c c 

 12 
2 

 sin 2t 
2 

 6 t   
 

 
 

iˆ 

Again, curl F  
   

 5î   2 ̂ j  3kˆ 

ˆj kˆ 

 

x y z 

2z 3x 5 y 

Since σ is oriented up and is expressed in the form 
z  g  x, y   4  x  y 

2 2 

, it follows 

curl F  n̂ dS 
 

 curl F   
z 

î   
z 

ĵ  k ̂ dA  x x  
R   

 5î   2 ̂ j  3k̂ 2x î   2 y ĵ  k̂ dA 
R 

 10x  4 y  3 dA 
R 

2 2 

  10r cos  4r sin  3 r dr d 
0 0 

2  r3 r3 r 2 
2 

  10 
3 

cos  4 
3 

sin  3 
2  d 

0  0 
2 

 80 32  
   3 

cos  
3 

sin  6  d 
0   

80 32 
2 

  3 
sin  

3 
cos  6  

 12 
0 
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Verify Stokes’ Theorem by evaluating the line integral and the surface integral. Assume that the surface has 

an upward orientation. 

 

 

1. F  x, y, z   3z î   4x ĵ  2 y k̂ 
, where  is the portion of the paraboloid z  4  x2  y2 

above the xy-plane. 

 

2. F  x, y, z    z  y  î    z  x ĵ   x  y k̂  
;  is the boundary of the paraboloid 

z  9  x2  y2 

above the xy-plane. 
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